Changes in Plankton Abundance, Biomass, and Chemical Composition under the Influence of the Cooling System of the Beloyarsk Nuclear Power Plant

Key words: phytoplankton, zooplankton, abundance, biomass, radionuclides, the Beloyarsk reservoir.

The Beloyarsk reservoir, which supplies cooling water to the Beloyarsk Nuclear Power Plant (NPP) in Sverdlovsk oblast, is an object of multifaceted investi- gation (Guseva and Chebotina, 1988, 1989; Kulikov, 1982; Trapeznikov et al., 1992; Chebotina et al., 1992). To date, however, the influence of the cooling system of the Beloyarsk NPP on phytoplanktonic and zooplank- tonic organisms has not been studied in detail. The available data concern mainly the Konakovo, Kos- troma, and other thermal power stations and are rather contradictory. Some studies indicate the absence of any influence of the cooling system on planktonic organ- isms, whereas other studies demonstrate a stimulating or inhibitory effect. The latter may be related to the fact that investigations are usually performed in the zone of heated water discharge, where conditions are favorable for the restoration of abundance of organisms passing through the cooling systems (Devyatkin, 1975; Elag- ina, 1975; Mamaeva, 1975; Mordukhai-Boltovskoi, 1975; Riv'er, 1975). For this reason, we took samples of plankton immediately at the outlet of the cooling system. Water from the water intake canal supplying it to the cooling system of the NPP was used as a control. The purpose of this study was to analyze changes in the species composition, abundance, biomass, and chem- ical composition of the plankton in the course of its pas- sage through the cooling system of the Beloyarsk NPP.

MATERIALS AND METHODS

In the years 1986-1991, in July, plankton samples were taken immediately at the inlet (the water intake canal) and the outlet of the cooling system (the water dis- charge canal). The phytoplankton was sampled 11 times, and the zooplankton, six times.

To determine species composition, abundance, and biomass of the phytoplankton, samples were taken from both canals simultaneously in two replications, using a water bottle. The samples were preserved, concentrated, and analyzed using a standard hemocytometer chamber under an MBI-15 microscope. Zooplankton was col- lected using a special dip net made of bolting cloth no. 70 and equipped with a bucket. After preservation, the samples were examined in a Bogorov chamber under a binocular microscope. Methods for identifying plank- tonic organisms and determining their abundance and biomass are described in detail in handbooks (Vasil'eva, 1987; Gollerbakh et al., 1953; Zabelina et al., 1951; Kiselev, 1954; Kratkii opredelitel', 1977; Komarenko and Vasil'eva, 1978; Metodika izucheniya, 1975; Metod- icheskie rekomendatsii, 1984). To determine the content of radionuclides and stable chemical elements in the plankton, the latter was collected by special dip nets made of bolting cloth no. 70. As it was impossible to sep- arate phyto- and zooplankton at this stage of investiga- tion, the total plankton was analyzed. The samples were dried in a drying oven at 105~ incinerated in a muffle furnace at 450~ and weighed. The content of 9~ was determined radiochemically; those of 6~ and 137Cs, by gamma-spectrometric methods using an AI-256 multi- channel amplitude analyzer with a Lemon NaJ(T1) scin- tillation detector with a statistical error of no more than 15-29%. The chemical composition of the plankton was determined using a Labtest apparatus.

RESULTS AND DISCUSSION

Table 1 presents the data generally characterizing the species composition, abundance, and biomass of the phytoplankton in the investigated canals. During the period of observations, 61 species of phytoplank- tonic organisms were recorded, with chlorococcous algae (belonging to the Chlorophyta) remaining preva- lent and accounting, on an average, for 38% of the total number of phytoplanktonic species. Blue-green algae prevailed in terms of abundance (80-100%). The most common species of this group included Aphanizome- non flos-aquae, Microcystis aeruginosa, M. pulverea, and Merismopedia tenuissima, Among green algae, Oocystis submarina was relatively abundant.

In terms of biomass, the Cyanophyta, Pyrrophyta, diatoms, and chlorococcous algae proved to be domi- nant in different periods of observation. According to the averaged data, however, the biomass of Cyanophyta clearly prevailed over that of other algae, accounting for approximately 70% of the total average for the phy- toplankton.

Table 1 shows that the abundance and biomass of different algae was markedly higher in the water intake canal than in the discharge canal. As averaged over the period of observations, the abundance of phytoplank- ton decreased upon the passage through the cooling systems by a factor of approximately 2, and its biomass decreased by a factor of 1.6. Table 2 demonstrates the average annual data on the total phytoplankton abun- dance and biomass, and the same parameters exist for the prevailing types of algae. In most cases, the param- eters recorded in the water discharge canal were signif- icantly lower than those in the water intake. It should be noted that the levels of abundance and biomass in the water intake and discharge canals were relatively high, compared with the corresponding aver- * Calculations performed without taking into account samples taken on July 31, 1990 at a peak of Cyanophyta abundance. age levels for the water body (Guseva et al., 1989). This is apparently explained by the fact that the cooling sys- tem receives water mainly from the surface layers, which are richer in phytoplankton than bottom layers. Hence, our data on phytoplankton abundance and bio- mass should not be extrapolated to the entire water body, as they only pertain to the aforementioned canals. The zooplankton was represented by 17 species belonging to two classes: Crustacea (nine species of the order Cladocera and four species of the Copepoda) and Rotatoria (four species). In terms of abundance and biomass, crustaceans obviously prevailed over rotifers, accounting for about 90-99% of the total zooplankton. As in the case of phytoplankton, the abundance and biomass of zooplanktonic organisms noticeably decreased after passing through the cooling installa- tions of the NPP. This was clearly observed with respect to the total average abundance and biomass of zooplankton (which decreased by factors of 3 and 2, respectively) and the corresponding parameters for individual classes and orders of zooplanktonic organ- isms. Table 4 shows that this difference between the water intake and discharge canals was revealed in dif- ferent years, with the values of zooplankton abundance and biomass decreasing by a factor of 2 to 5.

These results demonstrated that water passage through the cooling systems of the Beloyarsk NPP has an obvious damaging effect on phytoplanktonic and zooplanktonic organisms, which may be attributed to rapid water heating (by 8-9~ and traumatization of small aquatic organisms passing with cooling water through pumps and condenser tubes (Kulikov, 1978). It was interesting to estimate the proportions of undamaged and destroyed organisms in the phy- toplankton and zooplankton passing through the cool- ing system. These calculations were based on the aver- aged values of phytoplankton and zooplankton biomass in the investigated canals (Tables 1, 2) and the average monthly water volume passing through the water intake canal into the cooling system (65 x 106 m3). Table 5 shows that approximately 173 metric tons of phy- toplanktonic organisms and 11 t of zooplanktonic organ- isms per day are pumped in with water from the intake canal. Approximately 62% of phytoplanktonic and 45% of zooplanktonic organisms return to the reservoir through the water discharge canal without any apparent damage, whereas 38% of phytoplankton (65 t/day) and 55% of zooplankton (6 t/day) perish and tum into detri- tus, which is released in the cooling reservoir with heated water and, probably, is partly retained in the cooling systems.

The content of radionuclides in the plankton of the investigated canals varied in different years of observa- tions (Table 6). The increased values were obtained in 1986, when the second and third units of the NPP were functioning. In 1990 and 1991, after the second unit was put out of operation, the concentration of radionu- clides in the plankton noticeably decreased. Subse- ~0~ent observations revealed no differences between o and 137Cs concentrations in plankton samples from the water intake and water discharge canals. Regarding the plankton as a bioindicator of radioactive water con- tamination, it may be concluded that the operating third unit of the Beloyarsk NPP released no additional 6~ and 137Cs radionuclides into the reservoir through the cooling system. On the whole, radionuclide concentra- tions in the plankton of water intake and discharge canals are comparable with those in plants and grounds of the Beloyarsk reservoir (Chebotina et al., 1992). In 1985, the chemical composition of plankton before and after its passage through the cooling system was investigated (Table 7). In the water discharge canal, the plankton contained much more macro- and micro- elements than in the water intake canal. It may well be that chemical elements were adsorbed on particles and retained by dip nets in the course of plankton sampling. On the other hand, they could be absorbed by plank- tonic organisms in the course of their passage through the cooling system. In the present study, we did not determine whether these elements were stable or radio- active. In any case, when the second unit was operating (1985), they were released into the cooling reservoir and contributed to water contamination. Similar data were obtained for the cooling reservoir of the Kursk NPP (Vereshchak et al., 1996).

On the Problem of Flora Formation in Industrially Disturbed Land Areas

Key words: flora, industrially disturbed lands, taiga zone.

A major part of the global population already lives amid so called technogenic landscapes, in which industrial waste dumps and other types of disturbed land areas have a special place with regard to deleteri ous effects on the natural environment and human health. In Sverdlovsk oblast, they concentrate in the vicinities of all large cities and most other populated areas, covering more than 63 300 ha of land (Chaikina and Ob’edkova, 2003). Such territories are initially devoid of the soil and plant cover, and their ecologi cally specific substrate lacks the pool of seeds and other viable diaspores. Hence, the establishment of plants in them starts from point zero.

Studies on specific features of flora formation in such areas are of theoretical and practical significance for their biological recultivation and restoration of biological diversity. Problems concerning specific fea tures and patterns of these processes in industrial waste dumps have been considered in recent decades in many countries (Burda, 1991; Rostanski and Wozniak, 2000; Tokhtar’ et al., 2003; Tokhtar’ and Kharkhota, 2004). Intensive studies on bioecological characteristics of corresponding floras are performed in Ukraine (Bashuts’ka, 2002; Zhukov et al.; 2004, Yaroshchuk et al., 2007).

The purpose of this study was to reveal consistent trends in the restoration of floristic diversity in indus trially disturbed lands using the example of such areas in the taiga zone.

The objects studies in Sverdlovsk oblast were as fol lows: spoil banks of open cut bauxite mines near the city of Severouralsk (below, designated L 1); the southern spoil bank of the Veselovskoe lignite mine near the city of Karpinsk (L 2); refuse dumps of the foundry sand pit in the village of Basyanovskii (L 3); ash dumps of district power plant (DPP) in the city of Verkhnii Tagil (L 4); spoil banks of the Estyuninskii open cut iron ore mine near the city of Nizhnii Tagil (L 5); spoil banks of coal mines near the village of Bulanash (L 6); spoil and tailing dumps of dressing plants at the Bazhenovskoe serpentine asbestos mine, the city of Asbest (L 7); spoil and tailing dumps of the Pervouralsk titanomagnetite ore mine, the city of Per vouralsk (L 8); and spoil banks of Bilimbaevskoe flux ing limestone mine, the village of Bilimbai (L 9).

In Chelyabinsk oblast, studies were performed on spoil banks of Cheremshanskoe nickel ore mine near the city of Verkhnii Ufalei (L 10). The rock composi tion of the above dumps was briefly described previ ously (Chibrik, 2007).

The flora of these sites was characterized on the basis of geobotanical releves compiled for plots with different aged phytocenoses by conventional methods (Korchagin, 1964) and the results of additional route surveys. The age of sites was estimated from mine sur veying data. On the whole, 15–30 releves were made for each site. The initial floristic lists were published previously (Chibrik and El’kin, 1991).

Substrates of the sites are poor in nutrients, stony, and contain no soil (therefore, no plant diaspores). Therefore, the formation of their vegetation in the course of spontaneous overgrowing follows the pattern of primary succession as determined by Shennikov (1964). The age of the sites is young to medium, with the vegetation including serial phytocenoses up to 25– 30 years of age.

The species richness of individual local floras ranges from 57 to 149 in dependence on ecotope diver sity, which is minimum on the Estyuninskii spoil bank (L 5) and maximum on the ash dump of Verkhnii Tagil DPP (L 4), where herbaceous communities develop along with forest communities. The lowest fluctua tions of species composition (from 75 to 88 species) are characteristic of five sites with typical forest com munities.

Data on the bioecological structure of floras in industrially disturbed sites of the forest zone are shown in the table. Mesophytes dominate in all plant com munities, with their proportion ranging from 59.7% on spoil banks of coal mines in Bulanash (L 6) to 84% on those of the Pervouralsk titanomagnetite ore mine (L 8). The total proportion of mesophytes and xer omesophytes varies from 76 to 91% of the total species number. An analysis of life forms according to Raun kiaer’s scheme provides evidence for the prevalence of hemicryptophytes and considerable role of geophytes, with phanerophytes being dominant. Spoil banks of Bulanash coal mines (L 6) are an exception, since only herbaceous communities develop on them. With respect to the mode of fruit and seed dispersal, structural rearrangements in the floras involve three groups: autochores + barochores, zoochores, and hemianemochores + anemochores. In the floristic composition of communities following the forest pat tern of development, the proportion of zoochores reaches 27.9% (spoil banks of Severouralsk bauxite mines, L 1). In sites where only herbaceous commu nities develop (spoil banks of Bulanash coal mines, L 6) or such communities prevail (ash dumps of Verkhnii Tagil DPP, L 4), this proportion decreases to 14.5 and 17.5%, respectively. All floras contain a considerable proportion of anemochorous and hemianemochorous species, which decreases as the tree layer develops and crown closure increases. It should be noted in this context that dominants and the majority of species in the tree layer are anemochores. Forest communities with tree crown closure of about 0.4–0.8 grown on spoil banks of Basyanovskii sand pit (L 3), Estyunin skii iron ore mine (L 5), and asbestos mine (L 7) and contain 29.4–32.0% of species with the anemo chorous type of seed dispersal. The proportion of such species increases in communities where the degree of crown closure is lower (no more than 0.5) and reaches a peak of 49.4% in the flora of coal mine spoil banks, where only herbaceous plants can grow because of unfavorable ecological conditions (cone shaped mounds, stony substrate with acid pH, poor nutrient supply, etc.).

In terms of landscape–zonal classification, three prevailing groups can be distinguished: ruderal, forest, and meadow species (see table). The proportion of ruderal species depends on the degree of plant com munity development, decreasing in medium aged communities. Other relevant factors are the pattern of vegetation in surrounding areas and properties of the sub strate. Thus, Severouralsk (L 1), Yuzhnoe Veselovskoe (L 2), Basyanovskii (L 3), and Estyuninskii (L 5) spoil banks are surrounded by forest, and the propor tion of ruderal species is small even in communities formed in their “youngest” areas. A relatively high percentage of meadow species is due to incomplete canopy closure and large glades at forest margins, as well as to a major contribution to plant communities at early stages of their formation.

Analyzing local floras, we calculated the grades of species constancy as the sum of constancy classes in plant communities of all sites studied in the taiga zone. The constancy class of a species in each site was deter mined from the percentage of cenoses in which the species was recorded relative to the total number of cenoses described in the site (Shennikov, 1964): class I, 1–10%; class II, 1–20%; class III, 21–30%; …; class X, 91–100%. Thus, a species described in more than 91% geobotanical releves (i.e., sampling plots) was assigned the highest constancy class X. The high est possible grade of species constancy in the taiga zone was 100, indicating that the species had con stancy class X in all ten sites studied within this zone. The grades of species dominance were calculated in the same way.

The constancy grade characterizes the activity of species expansion to technogenic landscapes (Yurtsev, 1982; Didukh, 1982). Among 260 species described in industrially disturbed sites of the taiga zone, high con stancy grades (>50) were assigned to 13 species: trees Pinus sylvestris L. (66), Betula pendulaRoth (59), and Salix capreaL. (59) and herbaceous plants Chamaen erion angustifolium(L.) Scop (81), Tussilago farfaraL. (79),Achillea millefoliumL. (70), Trifolium pratenseL. (63), Taraxacum officinaleWigg. (62), Poa pratensisL. (59), Amoria repens(L.) C. Presl (56), Cirsium setosum (Willd.) Bess. (52), Festuca rubraL. (52), and De schampsia cespitosa(L.) Beauv (50). Many of them dominate in developing phytocenoses with respect to coverage and abundance. The above species comprise the core of floristic complex in the sites studied. Bioecological parameters of these species show that most of them are perennials (88.1% of the total species list). However, an important phytocenotic role at early stages of plant cover development in lifeless technogenic ecotopes is played by annuals and bienni als, which dominate in abundance and biomass in some sites. Mesophytes account for 71.5% of the spe cies list and are represented by different life forms (according to Raunkiaer): hemicryptophytes prevail (31%), with the total proportion of these species together with herbaceous chamaephytes and the inter mediate group of geophytes–hemicryptophytes reaching 64.3%; phanerophytes account for 16.7% (being dominant by other parameters); and the pro portion of therophytes and therophytes–hemicrypto phytes (annual and biennial) is only 11.9%. In terms of landscape–zonal classification, meadow and forest species prevail (35.7 and 23.9%), but proportions of ruderal and meadow–ruderal species are also consid erable (19.0 and 14.2%, respectively). The results of aerographic (ecogeographic) analysis confirm the prevalence of boreal species (85.7%; together with polyzonal species, 95.2%) among latitude groups and of Eurasian (52.4%) and circumpolar species (23.8%) among longitude groups.

A comparative analysis of these results and published data (Chibrik and Kravchenko, 1990; Bashuts’ka, 2002; Tokhtar’ and Kharkhota, 2004) provides evidence a zonal trend in the establishment of vegetation in techno genic barrens: new phytocenoses develop so as to approach the pattern of natural vegetation surround ing the technogenic ecosystem. This applies not only to the forest zone of the Urals but also to other natural zones, including the forest–steppes of the Urals and Ukraine. An additional argument in favor of this con clusion comes from floristic lists of herbaceous vegeta tion on spoil banks of some Ural iron ore mines, on substrates with a high content of stones and unfavor able ecological conditions (Chaikina and Ob’edkova, 2003): depending on the site, these lists range from 10 to 66 species.

Thus, against the background of general zonal trend in the formation of local flora, conditions char acteristic of a given technogenic site have a major, often decisive effect on this process. Therefore, analy sis of the structure of local floras can be used for esti mating the potential of disturbed land areas for biolog ical recultivation.

Истощение запасов пресной воды

За период с 1900 по 1995 год потребление пресной воды в мире увеличилось в 6 раз, что более чем в 2 раза превышает темпы прироста населения. В настоящее время почти 30% населения Земли испытывает недостаток в чистой воде. Если нынешние тенденции потребления пресной воды сохранятся, то к 2025 году в условиях дефицита воды будут проживать каждые два из трёх жителей Земли.

Основным источником обеспечения человечества пресной водой являются в целом активно возобновляемые поверхностные воды, которые составляют около 39 000 км3 в год. Ещё в 1970-е годы эти огромные ежегодно возобновляемые ресурсы пресной воды обеспечивали одного жителя земного шара в среднем в объёме около 11 тыс. м3/год, в 1980-е годы обеспеченность водными ресурсами на душу населения снизилась до 8,7 тыс. м3/год, а к концу ХХ века – до 6,5 тыс. м3/год. С учётом прогноза роста численности населения Земли к 2050 году (до 9 млрд.) обеспеченность водой упадёт до 4,3 тыс. м3/год. Вместе с тем необходимо учитывать, что приведённые средние данные носят обобщённый характер. Неравномерность распределения населения и водных ресурсов по земному шару приводит к тому, что в некоторых странах ежегодная обеспеченность населения пресной водой снижается до 2000-1000 м3/год (страны Южной Африки) или повышается до 100 тыс. м3/год (Новая Зеландия).

Подземные воды обеспечивают потребности 30% населения Земли. Особую озабоченность человечества вызывает их нерациональное использование и методы эксплуатации. Добыча подземных вод во многих регионах земного шара ведётся в таких объёмах, которые значительно превышают способность природы к их возобновлению. Это широко распространено на Аравийском полуострове, в Индии, Китае, Мексике, странах СНГ и США. Отмечается падение уровня подземных вод на 1-3 м в год.

Сложную задачу представляет охрана качества водных ресурсов. Использование воды для хозяйственных целей является одним из звеньев круговорота воды. Но антропогенное звено круговорота существенно отличается от естественного тем, что лишь часть использованной человеком воды в процессе испарения возвращается в атмосферу. Другая её часть, особенно при водоснабжении городов и промышленных предприятий, сбрасывается обратно в реки и водоёмы в виде сточных вод, загрязнённых отходами производства. Этот процесс продолжается в течение тысячелетий. С ростом городского населения, развитием промышленности, использованием в сельском хозяйстве минеральных удобрений и вредных химических веществ загрязнение поверхностных пресных вод стало приобретать глобальный масштаб. Наиболее серьёзную проблему представляет то обстоятельство, что более чем у 1 млрд. человек отсутствует доступ к безопасной питьевой воде, а половина населения земного шара не имеет доступа к надлежащим санитарно-гигиеническим услугам. Во многих развивающихся странах реки, протекающие через крупные города, представляют собой сточные канавы, и это создаёт опасность для здоровья населения.

Мировой океан – крупнейшая экологическая система планеты Земля представляет собой акватории четырёх океанов (Атлантического, Индийского, Тихого и Северного Ледовитого) со всеми взаимосвязанными прилежащими морями. Морская вода составляет 95% объёма всей гидросферы. Будучи важным звеном в круговороте воды, она обеспечивает питание ледников, рек и озёр, а тем самым – жизнь растений и животных. Морской океан играет огромную роль в создании необходимых условий жизни на планете, его фитопланктон обеспечивает 50-70% общего объёма кислорода, потребляемого живыми существами.

Радикальные перемены в использовании ресурсов Мирового океана принесла научно-техническая революция. Вместе с тем с НТР связаны и многие негативные процессы, и среди них – загрязнение вод Мирового океана. Катастрофически увеличивается загрязнение океана нефтью, химическими веществами, органическими остатками, захоронениями радиоактивных производств и др. По оценкам, Мировой океан поглощает главную часть загрязняющих веществ. Международное сообщество активно ведёт поиск путей эффективной охраны морской среды. В настоящее время существует более 100 конвенций, соглашений, договоров и других правовых актов. Международные соглашения регулируют различные аспекты, обусловливающие предотвращение загрязнения Мирового океана, среди них:
запрещение или ограничение определёнными условиями сбросов загрязняющих веществ, образующихся в процессе нормальной эксплуатации (1954 г.);
предотвращение преднамеренного загрязнения морской среды эксплуатационными отходами с судов, а также частично от стационарных и плавучих платформ (1973 г.);
запрещение или ограничение захоронения отходов и других материалов (1972 г.);
предотвращение загрязнения или уменьшение его последствий в результате аварий и катастроф (1969, 1978 гг.).

В формировании нового международно-правового режима Мирового океана ведущее место занимает Конвенция ООН по морскому праву (1982 г.), включающая комплекс проблем охраны и использования Мирового океана в современных условиях научно-технической революции. Конвенция провозгласила международный район морского дна и его ресурсы общим наследием человечества.

Экологические проблемы Амазонки

Амазонку называют величайшей рекой мира. Экологические проблемы в современное время, имеются, в той или иной степени, у всех рек. И Амазонка не исключение.

Длина этой великой реки составляет более 6 000 километров. Ни одна река не может сравниться с ней по объему воды. Истоки свои, Амазонка берет в Андах, а устье в Атлантическом океане. Из космоса хорошо видно, как вода Амазонки, пробивает путь, на сотню километров вглубь океана. Крупнейшими реками мира являются ее притоки. В дождливые сезоны, она затапливает огромные территории суши. Здесь большое разнообразие жизни, удивительное и неповторимое.


Одной из экологических проблем реки Амазонка, является сокращение или полностью исчезновение, некоторых видов животных. К примеру, судьбе гигантской доисторической рыбе Арапаиме, грозило полное исчезновение. Эту рыбу называют живым ископаемым. Ее длина 2 метра, а вес составляет около 100 килограммов. Что бы предотвратить вымирание, ее разводят на фермах и вылавливают, когда она вырастет. Арапаимы жили в Амазонке четыреста миллионов лет, но теперь, их среда обитания изменяется и сокращается.

Река Амазонка играет важную роль в жизни не только животного мира, но и людей. Выживание местных племен, полностью зависит от этой реки. После установки дамбы, рыбы стало меньше. Ее количество, сократилось катастрофически.

Амазонка – крупнейшая река в мире. У нее тысячи притоков. В ее водах обитают пираньи, которые славятся своими острыми зубами и прожорливостью. Кроме них, в Амазонке водится еще множество удивительных существ, но дикие животные могут исчезнуть по вине цивилизации. Люди «положили глаз» на богатства Амазонки. Одной из экологических проблем является золото. Люди перерыли джунгли в его поисках.

Когда в 16 веке, Запад узнал об Амазонке, белые завоеватели начали охотиться на Арапаиму, что бы похвастаться трофеями. В результате количество рыбы сократилось, и она оказалась на грани исчезновения. Это дорогая рыба, ее стоимость 10 долларов за килограмм. Взрослая особь может стоить до 700 долларов. В ресторанах, ее мясо подается, как деликатес.

Розовые дельфины обитали в океане и реках Южной Америки, 15 миллионов лет назад. Но потом, путь к океану им преградили Анды. Они рапслодились а реках и стали розового цвета. После появления поселенцев, розовые дельфины, пострадали больше всех. Их мясо использовали в качестве наживки, что бы ловить зубатку, которая стоила дорого.

Многочисленные дамбы, мешают рыбе попасть в места нереста. Искусственные сооружения, изменили течение реки и нарушили экосистему.

Город Манаус, соседствует с джунглями Амазонки. Его основали в 19 веке, что бы развивать производство каучука. Европейцы обрадовались, когда увидели, как коренные жители собирают с деревьев каучук. Он шел на изготовление покрышек для растущей автомобильной промышленности. Промышленники, которые изготавливали резину, запугали коренное население. Тех, кто отказывался на них работать, убивали. В Европу шли суда, груженные каучуком, а коренных жителей превратили в рабов. Говорят, что за каждую тысячу тонн каучука, было заплачено 10 000 жизней. Местные промышленники превратились в рабовладельцев.

В 19 веке, племя Марубу чуть не исчезло, попав в рабство к промышленникам. В результате племя утратило свои традиции. Люди перестали вместе обрабатывать землю и делиться добычей. Это серьезная экологическая проблема местного населения. Не менее серьезной проблемой считаются болезни, которые принесли чужеземцы.

Часть видового разнообразия, исчезла в результате вырубки леса. Лесные массивы превращались в пастбища и подвергали почву эрозии. Вырубка леса, в настоящее время – это одна из важнейших экологических проблем, не только бассейна Амазонки, но и всего мира.

Geographic Trends in the Accumulation of Heavy Metals in Mosses and Forest Litters in Karelia

Key words: heavy metals, accumulation, mosses, litters, Karelia, multivariate statistical analysis.

Heavy metals (HMs) are considered to be among priority technogenic pollutants. To solve ecological problems related to the environmental effects of HMs in the Russian North, it is necessary to make a detailed inventory of their contents in natural objects in different areas with regard to the diversity of climatic and soil-geochemical conditions and the degree of industrial development in these areas. It is known that mosses are informative indicators of aerotechnogenic environmen-tal pollution. Forest litters are important as the struc-tures retaining and accumulating various pollutants.

The contents of HMs in the soil depends on the distance from local pollution sources and, to a large extent, on the pattern of pollutant transfer in the upper layers of the atmosphere. An important role belongs to region-specific natural factors, i.e., local climate, relief, vege-tation, and soils. The Republic of Karelia is located on the Baltic shield, which forms the northwestern part of the Russian platform. The vast area of the republic (117300 km 2 ) extends from the north to the south for 672 km; hence, the climate, geological structure, hydrographic net-work, soils, and vegetation in different parts of the republic are heterogeneous. The climate in Karelia is relatively mild, with a long mild winter and a short cool summer; considerable cloudiness, high humidity, and changeable weather are characteristic of all seasons. The prevailing form of atmospheric circulation over the territory of Karelia is the western transfer of air masses. The formation of precipitation is also accounted for by moisture evapo-rated from the White Sea and numerous lakes and bogs, which cover one-third of the Karelian territory. Vegeta-tion has a considerable effect on the migration of sub-stances. In Karelia, coniferous forests are the dominant type of vegetation.

The spectrum of possible sources of technogenic HM pollution in Karelia is wide. There are 10284 sources of industrial emissions into the atmosphere, and most of them are concentrated in the cities of Petrozavodsk, Segezha, Kostomuksha, and Kondo-poga. The total amount of emissions from large indus-trial enterprises of these cities reaches 128600 tons per year. A complex combination of technogenic factors and natural geochemical conditions in Karelia deter-mines the pattern of HM distribution over its territory. In this work, we studied green mosses (Pleurozium schreberi, Hylocomium splendens) and forest litters. The former indicate the state of the atmosphere over a relatively short period of time (approximately three years), and the chemical composition of the latter reflects the impact of long-term industrial pollution (over more than ten years). The chemical analysis of mosses and litters can provide information about the sources, ranges, and extents of environmental pollu-tion, as well as reveal major pollutants. Our studies were performed by internationally accepted methods (Atmospheric Heavy Metal…, 1996).

Samples of green mosses and forest litters were taken from test plots of the bioindication network cov-ering the entire Karelian territory. The contents of iron, manganese, chromium, copper, nickel, zinc, cobalt, lead, and cadmium in the samples were determined by atomic absorption spectrometry.

We also estimated the effects of climatic parameters (wind rose, precipitation rate) on the distribution of aerotechnogenic pollutants containing HMs over the territory of the republic. The data on each of eight wind directions recorded by the Karelian hydrometeorologi-cal observatory (N, S, W, E, NE, NW, SE, SW) was assessed quantitatively with respect to wind stability, i.e., the frequency of its occurrence as a percentage of the total number of observations (without calm winds). Taking into account wind directions in winter and sum-mer and different weather patterns in the cold or warm periods of the year, the parameters of stability were averaged. Thus, we distinguished cold winters with lit-tle snow from warm, snowy winters and cold, rainy summers from warm, dry summers.

We developed an original approach to the analysis of HM distribution over the Karelian territory with respect to each individual element and their combinations, Geographic Trends in the Accumulation of Heavy Metals in Mosses and Forest Litters in Karelia which allowed us to assess the structure of their emis-sion from different sources. This approach involves the combined use of the methods of multivariate statistical analysis in the following sequence: stepwise regression analysis is used for selecting the most efficient climatic indices for each element; factor analysis, for assessing the structure of HM distribution with respect to combi-nations of elements; and stepwise discriminant analy-sis, for estimating the correctness of results obtained at the preceding stages. Another reason for using factor analysis is that HMs are distributed over the territory in certain combinations, rather than individually. Our results confirmed this fact (see below).

Regression analysis was used for assessing HM accumulation in mosses and forest litters with regard to the effects of most significant climatic indices on each element (Table 1). The results showed that precipitation generally has a weak effect on HM distribution; we can note only a slight influence of this parameter on the deposition of copper, nickel, and cadmium. Westerly winds bring to the Karelian territory mainly cobalt, lead, chromium, and manganese; east-erly winds, zinc and lead; northerly winds, zinc and nickel; and southerly winds, chromium and lead. The input of lead depends on winds to the greatest extent. The westerly winds are responsible for the distribution of a broader spectrum of HMs. The regression analysis of HM distribution and accumulation in green mosses and litters produced similar results. By factorizing the matrices of correlation between the values of pollutant distribution in mosses and forest litters, calculated by regression equations, we identified three factors (F1 , F2 , and F3) accounting for 80.0 and 77.1% of the total variance for mosses and litters, respectively. Each factor reflects one aspect of the inter-nal structure of HM combinations formed upon their distribution over the territory of Karelia (Table 2). Mosses.By F1 , the combination of Zn, Cr, Co, and Pb is distinguished (high positive loads). Factor F2, by high positive loads, reflects the distribution of the com-bination of copper and manganese over the territory. High negative loads may be used for tracing pollution with lead and cadmium, with the prevalence of the lat-ter. By F3, the combination of iron and nickel is distin-guished (high positive loads); a small negative load indicates the distribution of cobalt over the territory. Forest litters.By F1, the combination of manga-nese, cobalt, iron, and copper (with the prevalence of manganese) is distinguished (high positive loads). F2 indicates the distribution of iron, cadmium, zinc, and chromium, with the prevalence of iron (high positive loads). By F3, the combination of copper and cadmium (with the prevalence of copper) is distinguished (high positive loads).

According to the pattern of object distribution (the proximity of their coordinates in a three-dimensional space), five groups of administrative districts (raions) (I–V) were distinguished, which correspond to the areas where mosses and forest litters were polluted with HM combinations accounted for by each of the three factors:

(I) Loukhskii, Kaleval’skii, Kemskii, Muezerskii, Belomorskii raions and the city of Kostomuksha; pol-lutants: nickel, copper, manganese, and iron in mosses; cadmium, iron, chromium, zinc, copper, and nickel for litters.

(II) Segezhskii and Medvezh’egorskii raions; pol-lutants: copper, cobalt, chromium, lead, zinc, cadmium, and manganese in mosses; cobalt, nickel, cadmium, zinc, iron, and lead in litters.

(III) Pitkyarantskii, Sortaval’skii, Lakhdenpokhskii, and Suoyarvskii raions; pollutants: nickel, cobalt, chro-mium, lead, cadmium, zinc, and iron in mosses; cad-mium, nickel, and lead in litters.

(IV) Pryazhinskii, Kondopozhskii, Olonetskii, Pri-onezhskii, and Vepskii raions; pollutants: cobalt, lead, and cadmium in mosses; cobalt, manganese, copper,

iron, lead, and nickel in litters. (V) Pudozhskii raion; pollutants: chromium, lead, cobalt, zinc, copper, and manganese in mosses; iron, cadmium, copper, chromium, zinc, cobalt, and manga-nese in litters.

To estimate the correctness of grouping (homogene-ity within each group and heterogeneity of different groups), stepwise discriminant analysis was used. Its results confirmed that all five groups were identified correctly: they proved to be internally homogeneous and did not overlap with one another. The main dis-criminators (major pollutants) in forming regional groups with respect to the pollution of mosses are nickel, cobalt, chromium, and cadmium. According to their significance for group formation, they can be arranged in the following series: Co > Cr > Ni > Cd. In the case of forest litters, the main discriminators arranged in the same order are as follows: Fe > Mn > Pb > Zn.

The results of pairwise comparisons of the regional groups in the three-factor spaces with respect to HM contents in mosses and forest litters (Table 3) demon-strated that differences were significant only for groups I and II, especially concerning the contents of cad-mium. In the second group (Segezhskii and Med-vezh’egorskii raions), differences between HM accu-mulation in mosses and forest litters were significant for the majority of elements (especially for copper) and nonsignificant for zinc and iron.

Thus, we revealed the existence of geographic trends in the distribution of pollutants over the Karelian territory and their accumulation in mosses and forest litters.