Влияние металлургического производства на природную среду

Металлургическое производство оказывает немалое влияние на
окружающую среду из-за выброса в атмосферу продуктов сжигания различных видов топлива при работе доменных печей, переработки шихты в них (шихта – это смесь руды с нерудными добавками и кокса). При этом в атмосферу поступают двуокись углерода и сероводород, а также пыль с содержанием графита, различных металлов легких и тяжелых (алюминий, сурьма, мышьяк, ртуть, свинец, олово и т. д.) в зависимости от характера и назначения металлургического производства.

Вредными веществами являются оксиды углерода, серы и азота. Ежегодное поступление в атмосферу сернистого газа оценивается специалистами-экологами в объеме 100–150 млн т. С его выбросами связано образование так называемых кислотных осадков, которые наносят большой вред растительному и животному миру, разрушают различные сооружения, памятники архитектуры. Загрязнение окружающей среды металлургическими производствами происходит из-за сточных вод, в которые попадают различные химические соединения, образующиеся в процессе выплавки металлов. Воду металлургическое производство потребляет в больших количествах, поэтому его предприятия всегда сооружают в непосредственной близости от рек и озер или создают специальные гидротехнические сооружения, в которых она накапливается.

В результате такого загрязнения окружающей среды происходит ухудшение здоровья на-селения, снижается продолжительность жизни, увеличивается смертность. По существующим оценкам, 20–50 % продуктов питания содержат ядохимикаты, нитраты, тяжелые металлы в концентрациях, опасных для здоровья. В зоне работы металлургических производств загрязнены источники питьевой воды как поверхностные, так и подземные, особенно после выпадения кислотных дождей. Специалисты– экологи ожидали значительное улучшение экологической обстановки в районах деятельности металлургических производств благодаря конверсии и сокращению объемов выплавки металлов. Однако результаты оказались менее значительными, чем ожидалось, из-за сильной изношенности и оборудования металлургического комплекса и их очистных сооружений. Экологи стали фиксировать массу аварийных выбросов в атмосферу и в водоемы с металлургических производств.

Поддержание экологической безопасности является одной из важнейших проблем со-временной России. В 1996 г. была опубликована Концепция перехода Российской Федерации к устойчивому развитию, разработанная на основе Указа Президента РФ от 4 февраля 1994 г. «О государственной стратегии Российской Федерации по охране окружающей среды и обеспечению устойчивого развития». Концепция была рекомендована регионам страны для конкретизации и исполнения.

Сокращение биологического разнообразия

В период научно-технической революции главной силой, преобразующей растительный и животный мир, выступает человек. Деятельность человека в последние десятилетия привела к тому, что темпы исчезновения многих видов животного мира, в первую очередь млекопитающих и птиц, стали гораздо более интенсивными и значительно превышают расчётные средние темпы утраты видов  в предыдущих тысячелетиях. Прямые угрозы биоразнообразию, как правило, базируются на социально-экономических факторах. Так, рост народонаселения ведёт к повышению потребности в продуктах питания, соответствующему расширению сельскохозяйственных угодий, интенсификации землепользования, использованию земель под застройку, общему наращиванию потребления и усилению деградации природных ресурсов.

Согласно последним обследованиям, обобщённым специалистами ООН, около четверти миллиона видов растений, т. е. каждый восьмой, находятся под угрозой исчезновения. Проблематичным является также и выживание приблизительно 25% всех видов млекопитающих и 11% видов птиц. Продолжается истощение рыбных промысловых районов Мирового океана: за последние полвека улов рыбы вырос почти в пять раз, при этом 70% океанических промыслов подвергаются предельной либо запредельной эксплуатации.
Проблема сохранения биологического разнообразия во многом взаимосвязана с деградацией лесных ресурсов. Леса содержат свыше 50% мирового биоразнообразия, обеспечивают ландшафтное многообразие, формируют и защищают почвы, содействуют задержанию и очистке воды, производству кислорода, снижают угрозу глобального потепления климата. Рост численности населения и развитие мирового хозяйства обусловили растущий глобальный спрос на лесную продукцию. В итоге за последние 300 лет уничтожено 66-68% лесной площади планеты, и лесистость сократилась до 30%. Заготовка древесины ограниченного числа пород приводит к изменениям в видовом составе крупных лесных массивов и является одной из причин общей утраты биологического разнообразия. В период 1990-2000 гг. в развивающихся странах в результате чрезмерной вырубки, трансформации под сельскохозяйственные угодья, болезней и пожаров было потеряно десятки миллионов гектаров лесных угодий. Особенно угрожающее положение сложилось в тропических лесах. При современной скорости их вырубки в XXI столетии в некоторых регионах (Малайзия, Индонезия) леса могут исчезнуть полностью.

Осознание непредсказуемой ценности биологического разнообразия, его значения для поддержания естественной эволюции и устойчивого функционирования биосферы привело человечество к пониманию угрозы, которую создаёт сокращение биологического разнообразия, происходящее в результате некоторых видов человеческой деятельности. Разделяя озабоченность мирового сообщества, Конференция ООН по окружающей среде и развитию (1992 г.) среди других важнейших документов приняла Конвенцию о биологическом разнообразии. Основные положения конвенции направлены на рациональное использование природных биологических ресурсов и осуществление действенных мер по их сохранению.

В течение тысячелетий люди стремились получить от природы как можно больше её богатств и не помогали ей восстанавливать их. Но череда экологических кризисов стала хорошим уроком для людей, и они постепенно учатся исправлять свои ошибки. В наши дни всё большее число стран с большим трудом, но всё-таки учатся договариваться между собой о том, как вместе спасти планету от загрязнения воздуха и воды, от опустынивания и исчезновения лесов. Растёт число особо охраняемых природных территорий. В 2000 году таких территорий в мире было уже 11,5 тыс., а их общая площадь превышала 12 млн. км2. Это значит, что в совокупности они занимали примерно 9% всей обитаемой суши. В конце ХХ столетия человек создал промышленные технологии, не дающие токсичных отходов и загрязнений, стал строить эффективные очистные сооружения, разработал многочисленные способы безопасного ведения сельского хозяйства. Всё это означает выполнение выдвинутого ООН ещё в 1970-х годах девиза: «Земля только одна!».

Экологическая проблема отходов

Отходы – это одна из основных современных экологических проблем, которая несет в себе потенциальную опасность для здоровья людей, а также опасность для окружающей природной среды. Во многих странах до сих пор существует проблема недопонимания всей серьезности проблемы твердых бытовых отходов, в связи с чем, нет строго регламента, а также необходимых нормативно-правовых актов, регулирующих вопросы, связанные с отходами и мусором.

Серьезность проблемы отходов раньше не была столь заметна. Природа до определенного времени справлялась с переработкой отходов сама, но технический прогресс человечества сыграл важную роль в этом моменте. Появились новые материалы, разложение или переработка, которых естественным путем может длиться не одну сотню лет, а такие антропогенные нагрузки природе уже не под силу. Да, и немало важный фактор – это современный объем, производимых отходов. Он просто огромен. Но сегодня отходы и мусор можно рассматривать, как сырье. Их можно перерабатывать и повторно использовать. На каждого городского жителя, примерно, приходится от 500 до 800 кг отходов за год. В некоторых странах до 1000 кг. И это число все время растет.

Современные мусоросжигающие и мусороперерабатывающие заводы со всем своим арсеналом – это своего рода целая индустрия переработки и утилизации твердых бытовых отходов городского населения.

Какие бывают отходы?
Бытовые или коммунальные – огромное множество жидких и твердых отходов, выбрасываемых человеком, а также образующихся в результате жизнедеятельности человека. Это могут быть испорченные или просроченные продукты питания, лекарственные препараты, бытовые предметы и прочий мусор.

Промышленные – сырьевые остатки, которые образовались в результате производства какой либо продукции, производственных работ и утратили свои свойства полностью или частично. Промышленные отходы могут быть жидкими и твердыми. Твердые промышленные отходы: металлы и сплавы, древесина, пластмассы, пыль, пенополиуретаны, пенополистиролы, полиэтилены и прочий мусор. Жидкие промышленные отходы: сточные воды различной степени загрязненности и их осадки.

Сельскохозяйственные – любые отходы, образующиеся в результате сельскохозяйственной деятельности: навоз, гнилая или непригодная для использования солома, сено, остатки силосных ям, испорченный или непригодный комбикорм и жидкие корма.

Строительные – появляются в результате производства строительных и отделочных материалов (лакокрасочных, теплоизоляционных и т.д.), при строительстве зданий и сооружений, а также при проведении монтажных, отделочных, облицовочных и ремонтных работ. Строительными отходами (как твердыми, так и жидкими) могут быть просроченные, непригодные для использования, бракованные, лишние, сломанные и имеющие дефекты товары и материалы: металлопрофиль, металлические и капроновые трубы, гипсокартонные, гипсоволокнистые, цементно-стружечные и прочие листы. Кроме того, различная строительная химия (лаки, краски, клеи, растворители, противоморозные, противогрибковые и защитные добавки и средства).

Радиоактивные отходы – производство и применение различных радиоактивных материалов и веществ.

Промышленные и сельскохозяйственные отходы принято называть отходами производства или производственными отходами. Как правило, это токсичные и нетоксичные отходы и мусор. Токсичные – отходы, которые могут воздействовать на живое существо поражающе или отравляюще. На территории России находится огромное количество токсичных отходов. Они занимают большие площади хранения. Наиболее загрязненным отходами является Уральский регион. Примерно около 40 миллиардов тонн различных отходов накопилось в Свердловской области. Каждый год образуется от 150 до 170 миллионов тонн отходов, часть которых является токсичными. Лишь малая часть этих отходов подвергается утилизации и обезвреживанию. Происходит сильная нагрузка на окружающую природную среду, что представляет опасность для многомиллионного населения.

Планету буквально заполонили мусором. Твердые бытовые отходы разнообразны: древесина, картон и бумага, текстиль, кожа и кости, резина и металлы, камни, стекло и пластмассы. Гниющий мусор является благоприятной средой для множества микроорганизмов, которые могут вызывать инфекции и заболевания.

По-своему опасны пластмассы. Они не подвергаются разрушению в течение продолжительного периода времени. Пластмассы могут пролежать в земле десятки, а некоторые виды и сотни лет. Более миллиона тонн полиэтилена тратится на одноразовую упаковку. Каждый год в Европе миллионы тонн пластмассовых отходов оказывается в мусоре.

Существуют инновационные методы получения из отходов пластмассовых изделий и материалов получать дизельное топливо и бензин. Этот метод разработан японскими учеными. Данная технология позволяет получать из 10 кг пластмассовых отходов до 5 литров дизельного топлива или бензина. Подобными методами можно приобрести не только экономическую выгоду, но снизить антропогенную нагрузку на окружающую среду.

Использование в качестве сырья отходов и мусора позволяет более рационально применять природные ресурсы и снижать вредные выбросы в атмосферу и сбросы сточных вод. Например, используя в качестве сырья для производства бумаги макулатуры, можно сократить вредные выбросы в воздух на 70-80%, загрязнение водных объектов на 30-35%, по сравнению с применением первичного сырья. Около четырех кубических метра древесины можно сэкономить, используя одну тонну макулатуры. Таким образом, сохраняются тысячи гектар лесных угодий, которые в свою очередь работают на очищение атмосферного воздуха от углекислого газа. Избежать экологической катастрофы и истощения природных ресурсов можно и нужно. В Англии устанавливаются ящики для сбора старых, прочитанных газет, куда население бросает газеты, и они отправляются на переработку.

Сбор макулатуры, процесс не самый важный в цепочке производства материалов из вторичного сырья. Заводы должны быть оснащены всеми необходимыми производственными установками. В России данная отрасль слабо развита. Чтобы получить газетную бумагу из вторсырья, необходимо удаление краски, очищение массы и ее отбеливание. Процесс довольно не простой и не дешевый. А все экономически невыгодные процессы в России, заканчиваются еще, не успев начаться.

Московское производственное предприятие «Промотходы», имеет в своем арсенале оборудование по переработке макулатуры в утеплитель. В Европе, теплоизоляционный материал из макулатуры, начали делать уже давно. Так называемая эковата (теплоизоляция), приобрела популярность не только у строителей, но и у рядового покупателя. Это экологический материал совершенно безопасный для человека и окружающей среды.

Японцы пошли еще дальше. Туалетную бумагу они делают из переработанных железнодорожных билетов и билетов метрополитена. Также из этих билетов изготавливается картонная тара.

Загрязнение отходами цветных металлов. На городские свалки, вывозятся сотни тысяч отработанных аккумуляторных батарей. Вместе с мусором на свалки попадают сотни тонн ртути, олова, электрических лампочек с вольфрамом. В несколько раз выгоднее перерабатывать вторичное сырье в виде отходов, чем производить из первичного. Получение металла из руды в 25 раз дороже, чем сбор и переработка втормета. Производство алюминия из первичного сырья потребляет в 70-80 раз больше электричества, по сравнению с переплавкой отходов.

Стеклянная тара валяется горами в каждом городе, причем не, только в неблагополучных районах, но и в самом центре города, такое явление не редкость. Стеклотара либо доходит до полигона твердых бытовых отходов, свалки, либо до мусоросжигательного завода. Хотя многоразовое использование стеклотары экономически выгоднее производства новой, этот момент не развит должным образом.

С ростом автомобильной промышленности, выросло негативное воздействие на окружающую среду. Помимо аккумуляторов, пластмассы, металла, от автомобилей исходит огромное количество отходов в виде резиновых покрышек. Главная проблема такого мусора в том, природа не в состоянии справиться с каучуком. Избежать экологического загрязнения окружающей среды автомобильными покрышками можно, переработав их в резиновую крупу, размером до 5 мм. После чего, из полученного материала возможно производство различных изделий.

Российский ученый Платонов, изобрел метод получения топлива из старых покрышек. Покрышки помещаются в специальный реактор и заливаются химическим раствором. Через пару часов получается жидкость, похожая на нефть, которую можно перегнать в бензин. Переработав, таким образом, 1000 кг покрышек, можно получить около 600 кг нефтеподобной жидкости, из которой потом получится 200 литров бензина и 200 литров дизельного топлива.

Радиохимические заводы, атомные электростанции, научные исследовательские центры, производят один из самых опасных видов отходов – радиоактивные. Данный вид отходов представляет собой не только серьезную экологическую проблему, но и может создать экологическую катастрофу. Радиоактивные отходы могут быть жидкими (большая их часть) и твердыми. Неправильное обращение с радиоактивными отходами может серьезно усугубить экологическую ситуацию. Поступление радиоактивных отходов в Россию из других стран запрещен, хватает своих. Печальный опыт знакомства с радиоактивными отходами тоже есть – авария на Чернобыле. Данный вид загрязнения является глобальным.

В России, ситуация с мусором и отходами оставляет желать лучшего. Основная часть мусора киснет на свалках и полигонах, лишь 3-4% перерабатываются. Существует явная нехватка мусороперерабатывающих комбинатов. Наличие нескольких мусоросжигательных заводов, лишь превращает один вид отхода в другой. Такой подход не решит экологическую проблему мусора и отходов в России.

Кроме того, Россия привлекает Европейские компании, которые готовы бесплатно построить современные заводы по переработке отходов, взамен на ввоз определенного количества своих отходов. Таким образом, Россия может превратиться в международную свалку. Для ликвидации экологических проблем, связанных с отходами, требуется комплексный подход, включающий в себя оценку ситуации, разработку стратегии снижения образования отходов, внедрение безотходных или малоотходных технологий на производстве.

Changes in Plankton Abundance, Biomass, and Chemical Composition under the Influence of the Cooling System of the Beloyarsk Nuclear Power Plant

Key words: phytoplankton, zooplankton, abundance, biomass, radionuclides, the Beloyarsk reservoir.

The Beloyarsk reservoir, which supplies cooling water to the Beloyarsk Nuclear Power Plant (NPP) in Sverdlovsk oblast, is an object of multifaceted investi- gation (Guseva and Chebotina, 1988, 1989; Kulikov, 1982; Trapeznikov et al., 1992; Chebotina et al., 1992). To date, however, the influence of the cooling system of the Beloyarsk NPP on phytoplanktonic and zooplank- tonic organisms has not been studied in detail. The available data concern mainly the Konakovo, Kos- troma, and other thermal power stations and are rather contradictory. Some studies indicate the absence of any influence of the cooling system on planktonic organ- isms, whereas other studies demonstrate a stimulating or inhibitory effect. The latter may be related to the fact that investigations are usually performed in the zone of heated water discharge, where conditions are favorable for the restoration of abundance of organisms passing through the cooling systems (Devyatkin, 1975; Elag- ina, 1975; Mamaeva, 1975; Mordukhai-Boltovskoi, 1975; Riv'er, 1975). For this reason, we took samples of plankton immediately at the outlet of the cooling system. Water from the water intake canal supplying it to the cooling system of the NPP was used as a control. The purpose of this study was to analyze changes in the species composition, abundance, biomass, and chem- ical composition of the plankton in the course of its pas- sage through the cooling system of the Beloyarsk NPP.

MATERIALS AND METHODS

In the years 1986-1991, in July, plankton samples were taken immediately at the inlet (the water intake canal) and the outlet of the cooling system (the water dis- charge canal). The phytoplankton was sampled 11 times, and the zooplankton, six times.

To determine species composition, abundance, and biomass of the phytoplankton, samples were taken from both canals simultaneously in two replications, using a water bottle. The samples were preserved, concentrated, and analyzed using a standard hemocytometer chamber under an MBI-15 microscope. Zooplankton was col- lected using a special dip net made of bolting cloth no. 70 and equipped with a bucket. After preservation, the samples were examined in a Bogorov chamber under a binocular microscope. Methods for identifying plank- tonic organisms and determining their abundance and biomass are described in detail in handbooks (Vasil'eva, 1987; Gollerbakh et al., 1953; Zabelina et al., 1951; Kiselev, 1954; Kratkii opredelitel', 1977; Komarenko and Vasil'eva, 1978; Metodika izucheniya, 1975; Metod- icheskie rekomendatsii, 1984). To determine the content of radionuclides and stable chemical elements in the plankton, the latter was collected by special dip nets made of bolting cloth no. 70. As it was impossible to sep- arate phyto- and zooplankton at this stage of investiga- tion, the total plankton was analyzed. The samples were dried in a drying oven at 105~ incinerated in a muffle furnace at 450~ and weighed. The content of 9~ was determined radiochemically; those of 6~ and 137Cs, by gamma-spectrometric methods using an AI-256 multi- channel amplitude analyzer with a Lemon NaJ(T1) scin- tillation detector with a statistical error of no more than 15-29%. The chemical composition of the plankton was determined using a Labtest apparatus.

RESULTS AND DISCUSSION

Table 1 presents the data generally characterizing the species composition, abundance, and biomass of the phytoplankton in the investigated canals. During the period of observations, 61 species of phytoplank- tonic organisms were recorded, with chlorococcous algae (belonging to the Chlorophyta) remaining preva- lent and accounting, on an average, for 38% of the total number of phytoplanktonic species. Blue-green algae prevailed in terms of abundance (80-100%). The most common species of this group included Aphanizome- non flos-aquae, Microcystis aeruginosa, M. pulverea, and Merismopedia tenuissima, Among green algae, Oocystis submarina was relatively abundant.

In terms of biomass, the Cyanophyta, Pyrrophyta, diatoms, and chlorococcous algae proved to be domi- nant in different periods of observation. According to the averaged data, however, the biomass of Cyanophyta clearly prevailed over that of other algae, accounting for approximately 70% of the total average for the phy- toplankton.

Table 1 shows that the abundance and biomass of different algae was markedly higher in the water intake canal than in the discharge canal. As averaged over the period of observations, the abundance of phytoplank- ton decreased upon the passage through the cooling systems by a factor of approximately 2, and its biomass decreased by a factor of 1.6. Table 2 demonstrates the average annual data on the total phytoplankton abun- dance and biomass, and the same parameters exist for the prevailing types of algae. In most cases, the param- eters recorded in the water discharge canal were signif- icantly lower than those in the water intake. It should be noted that the levels of abundance and biomass in the water intake and discharge canals were relatively high, compared with the corresponding aver- * Calculations performed without taking into account samples taken on July 31, 1990 at a peak of Cyanophyta abundance. age levels for the water body (Guseva et al., 1989). This is apparently explained by the fact that the cooling sys- tem receives water mainly from the surface layers, which are richer in phytoplankton than bottom layers. Hence, our data on phytoplankton abundance and bio- mass should not be extrapolated to the entire water body, as they only pertain to the aforementioned canals. The zooplankton was represented by 17 species belonging to two classes: Crustacea (nine species of the order Cladocera and four species of the Copepoda) and Rotatoria (four species). In terms of abundance and biomass, crustaceans obviously prevailed over rotifers, accounting for about 90-99% of the total zooplankton. As in the case of phytoplankton, the abundance and biomass of zooplanktonic organisms noticeably decreased after passing through the cooling installa- tions of the NPP. This was clearly observed with respect to the total average abundance and biomass of zooplankton (which decreased by factors of 3 and 2, respectively) and the corresponding parameters for individual classes and orders of zooplanktonic organ- isms. Table 4 shows that this difference between the water intake and discharge canals was revealed in dif- ferent years, with the values of zooplankton abundance and biomass decreasing by a factor of 2 to 5.

These results demonstrated that water passage through the cooling systems of the Beloyarsk NPP has an obvious damaging effect on phytoplanktonic and zooplanktonic organisms, which may be attributed to rapid water heating (by 8-9~ and traumatization of small aquatic organisms passing with cooling water through pumps and condenser tubes (Kulikov, 1978). It was interesting to estimate the proportions of undamaged and destroyed organisms in the phy- toplankton and zooplankton passing through the cool- ing system. These calculations were based on the aver- aged values of phytoplankton and zooplankton biomass in the investigated canals (Tables 1, 2) and the average monthly water volume passing through the water intake canal into the cooling system (65 x 106 m3). Table 5 shows that approximately 173 metric tons of phy- toplanktonic organisms and 11 t of zooplanktonic organ- isms per day are pumped in with water from the intake canal. Approximately 62% of phytoplanktonic and 45% of zooplanktonic organisms return to the reservoir through the water discharge canal without any apparent damage, whereas 38% of phytoplankton (65 t/day) and 55% of zooplankton (6 t/day) perish and tum into detri- tus, which is released in the cooling reservoir with heated water and, probably, is partly retained in the cooling systems.

The content of radionuclides in the plankton of the investigated canals varied in different years of observa- tions (Table 6). The increased values were obtained in 1986, when the second and third units of the NPP were functioning. In 1990 and 1991, after the second unit was put out of operation, the concentration of radionu- clides in the plankton noticeably decreased. Subse- ~0~ent observations revealed no differences between o and 137Cs concentrations in plankton samples from the water intake and water discharge canals. Regarding the plankton as a bioindicator of radioactive water con- tamination, it may be concluded that the operating third unit of the Beloyarsk NPP released no additional 6~ and 137Cs radionuclides into the reservoir through the cooling system. On the whole, radionuclide concentra- tions in the plankton of water intake and discharge canals are comparable with those in plants and grounds of the Beloyarsk reservoir (Chebotina et al., 1992). In 1985, the chemical composition of plankton before and after its passage through the cooling system was investigated (Table 7). In the water discharge canal, the plankton contained much more macro- and micro- elements than in the water intake canal. It may well be that chemical elements were adsorbed on particles and retained by dip nets in the course of plankton sampling. On the other hand, they could be absorbed by plank- tonic organisms in the course of their passage through the cooling system. In the present study, we did not determine whether these elements were stable or radio- active. In any case, when the second unit was operating (1985), they were released into the cooling reservoir and contributed to water contamination. Similar data were obtained for the cooling reservoir of the Kursk NPP (Vereshchak et al., 1996).

On the Problem of Flora Formation in Industrially Disturbed Land Areas

Key words: flora, industrially disturbed lands, taiga zone.

A major part of the global population already lives amid so called technogenic landscapes, in which industrial waste dumps and other types of disturbed land areas have a special place with regard to deleteri ous effects on the natural environment and human health. In Sverdlovsk oblast, they concentrate in the vicinities of all large cities and most other populated areas, covering more than 63 300 ha of land (Chaikina and Ob’edkova, 2003). Such territories are initially devoid of the soil and plant cover, and their ecologi cally specific substrate lacks the pool of seeds and other viable diaspores. Hence, the establishment of plants in them starts from point zero.

Studies on specific features of flora formation in such areas are of theoretical and practical significance for their biological recultivation and restoration of biological diversity. Problems concerning specific fea tures and patterns of these processes in industrial waste dumps have been considered in recent decades in many countries (Burda, 1991; Rostanski and Wozniak, 2000; Tokhtar’ et al., 2003; Tokhtar’ and Kharkhota, 2004). Intensive studies on bioecological characteristics of corresponding floras are performed in Ukraine (Bashuts’ka, 2002; Zhukov et al.; 2004, Yaroshchuk et al., 2007).

The purpose of this study was to reveal consistent trends in the restoration of floristic diversity in indus trially disturbed lands using the example of such areas in the taiga zone.

The objects studies in Sverdlovsk oblast were as fol lows: spoil banks of open cut bauxite mines near the city of Severouralsk (below, designated L 1); the southern spoil bank of the Veselovskoe lignite mine near the city of Karpinsk (L 2); refuse dumps of the foundry sand pit in the village of Basyanovskii (L 3); ash dumps of district power plant (DPP) in the city of Verkhnii Tagil (L 4); spoil banks of the Estyuninskii open cut iron ore mine near the city of Nizhnii Tagil (L 5); spoil banks of coal mines near the village of Bulanash (L 6); spoil and tailing dumps of dressing plants at the Bazhenovskoe serpentine asbestos mine, the city of Asbest (L 7); spoil and tailing dumps of the Pervouralsk titanomagnetite ore mine, the city of Per vouralsk (L 8); and spoil banks of Bilimbaevskoe flux ing limestone mine, the village of Bilimbai (L 9).

In Chelyabinsk oblast, studies were performed on spoil banks of Cheremshanskoe nickel ore mine near the city of Verkhnii Ufalei (L 10). The rock composi tion of the above dumps was briefly described previ ously (Chibrik, 2007).

The flora of these sites was characterized on the basis of geobotanical releves compiled for plots with different aged phytocenoses by conventional methods (Korchagin, 1964) and the results of additional route surveys. The age of sites was estimated from mine sur veying data. On the whole, 15–30 releves were made for each site. The initial floristic lists were published previously (Chibrik and El’kin, 1991).

Substrates of the sites are poor in nutrients, stony, and contain no soil (therefore, no plant diaspores). Therefore, the formation of their vegetation in the course of spontaneous overgrowing follows the pattern of primary succession as determined by Shennikov (1964). The age of the sites is young to medium, with the vegetation including serial phytocenoses up to 25– 30 years of age.

The species richness of individual local floras ranges from 57 to 149 in dependence on ecotope diver sity, which is minimum on the Estyuninskii spoil bank (L 5) and maximum on the ash dump of Verkhnii Tagil DPP (L 4), where herbaceous communities develop along with forest communities. The lowest fluctua tions of species composition (from 75 to 88 species) are characteristic of five sites with typical forest com munities.

Data on the bioecological structure of floras in industrially disturbed sites of the forest zone are shown in the table. Mesophytes dominate in all plant com munities, with their proportion ranging from 59.7% on spoil banks of coal mines in Bulanash (L 6) to 84% on those of the Pervouralsk titanomagnetite ore mine (L 8). The total proportion of mesophytes and xer omesophytes varies from 76 to 91% of the total species number. An analysis of life forms according to Raun kiaer’s scheme provides evidence for the prevalence of hemicryptophytes and considerable role of geophytes, with phanerophytes being dominant. Spoil banks of Bulanash coal mines (L 6) are an exception, since only herbaceous communities develop on them. With respect to the mode of fruit and seed dispersal, structural rearrangements in the floras involve three groups: autochores + barochores, zoochores, and hemianemochores + anemochores. In the floristic composition of communities following the forest pat tern of development, the proportion of zoochores reaches 27.9% (spoil banks of Severouralsk bauxite mines, L 1). In sites where only herbaceous commu nities develop (spoil banks of Bulanash coal mines, L 6) or such communities prevail (ash dumps of Verkhnii Tagil DPP, L 4), this proportion decreases to 14.5 and 17.5%, respectively. All floras contain a considerable proportion of anemochorous and hemianemochorous species, which decreases as the tree layer develops and crown closure increases. It should be noted in this context that dominants and the majority of species in the tree layer are anemochores. Forest communities with tree crown closure of about 0.4–0.8 grown on spoil banks of Basyanovskii sand pit (L 3), Estyunin skii iron ore mine (L 5), and asbestos mine (L 7) and contain 29.4–32.0% of species with the anemo chorous type of seed dispersal. The proportion of such species increases in communities where the degree of crown closure is lower (no more than 0.5) and reaches a peak of 49.4% in the flora of coal mine spoil banks, where only herbaceous plants can grow because of unfavorable ecological conditions (cone shaped mounds, stony substrate with acid pH, poor nutrient supply, etc.).

In terms of landscape–zonal classification, three prevailing groups can be distinguished: ruderal, forest, and meadow species (see table). The proportion of ruderal species depends on the degree of plant com munity development, decreasing in medium aged communities. Other relevant factors are the pattern of vegetation in surrounding areas and properties of the sub strate. Thus, Severouralsk (L 1), Yuzhnoe Veselovskoe (L 2), Basyanovskii (L 3), and Estyuninskii (L 5) spoil banks are surrounded by forest, and the propor tion of ruderal species is small even in communities formed in their “youngest” areas. A relatively high percentage of meadow species is due to incomplete canopy closure and large glades at forest margins, as well as to a major contribution to plant communities at early stages of their formation.

Analyzing local floras, we calculated the grades of species constancy as the sum of constancy classes in plant communities of all sites studied in the taiga zone. The constancy class of a species in each site was deter mined from the percentage of cenoses in which the species was recorded relative to the total number of cenoses described in the site (Shennikov, 1964): class I, 1–10%; class II, 1–20%; class III, 21–30%; …; class X, 91–100%. Thus, a species described in more than 91% geobotanical releves (i.e., sampling plots) was assigned the highest constancy class X. The high est possible grade of species constancy in the taiga zone was 100, indicating that the species had con stancy class X in all ten sites studied within this zone. The grades of species dominance were calculated in the same way.

The constancy grade characterizes the activity of species expansion to technogenic landscapes (Yurtsev, 1982; Didukh, 1982). Among 260 species described in industrially disturbed sites of the taiga zone, high con stancy grades (>50) were assigned to 13 species: trees Pinus sylvestris L. (66), Betula pendulaRoth (59), and Salix capreaL. (59) and herbaceous plants Chamaen erion angustifolium(L.) Scop (81), Tussilago farfaraL. (79),Achillea millefoliumL. (70), Trifolium pratenseL. (63), Taraxacum officinaleWigg. (62), Poa pratensisL. (59), Amoria repens(L.) C. Presl (56), Cirsium setosum (Willd.) Bess. (52), Festuca rubraL. (52), and De schampsia cespitosa(L.) Beauv (50). Many of them dominate in developing phytocenoses with respect to coverage and abundance. The above species comprise the core of floristic complex in the sites studied. Bioecological parameters of these species show that most of them are perennials (88.1% of the total species list). However, an important phytocenotic role at early stages of plant cover development in lifeless technogenic ecotopes is played by annuals and bienni als, which dominate in abundance and biomass in some sites. Mesophytes account for 71.5% of the spe cies list and are represented by different life forms (according to Raunkiaer): hemicryptophytes prevail (31%), with the total proportion of these species together with herbaceous chamaephytes and the inter mediate group of geophytes–hemicryptophytes reaching 64.3%; phanerophytes account for 16.7% (being dominant by other parameters); and the pro portion of therophytes and therophytes–hemicrypto phytes (annual and biennial) is only 11.9%. In terms of landscape–zonal classification, meadow and forest species prevail (35.7 and 23.9%), but proportions of ruderal and meadow–ruderal species are also consid erable (19.0 and 14.2%, respectively). The results of aerographic (ecogeographic) analysis confirm the prevalence of boreal species (85.7%; together with polyzonal species, 95.2%) among latitude groups and of Eurasian (52.4%) and circumpolar species (23.8%) among longitude groups.

A comparative analysis of these results and published data (Chibrik and Kravchenko, 1990; Bashuts’ka, 2002; Tokhtar’ and Kharkhota, 2004) provides evidence a zonal trend in the establishment of vegetation in techno genic barrens: new phytocenoses develop so as to approach the pattern of natural vegetation surround ing the technogenic ecosystem. This applies not only to the forest zone of the Urals but also to other natural zones, including the forest–steppes of the Urals and Ukraine. An additional argument in favor of this con clusion comes from floristic lists of herbaceous vegeta tion on spoil banks of some Ural iron ore mines, on substrates with a high content of stones and unfavor able ecological conditions (Chaikina and Ob’edkova, 2003): depending on the site, these lists range from 10 to 66 species.

Thus, against the background of general zonal trend in the formation of local flora, conditions char acteristic of a given technogenic site have a major, often decisive effect on this process. Therefore, analy sis of the structure of local floras can be used for esti mating the potential of disturbed land areas for biolog ical recultivation.

Истощение запасов пресной воды

За период с 1900 по 1995 год потребление пресной воды в мире увеличилось в 6 раз, что более чем в 2 раза превышает темпы прироста населения. В настоящее время почти 30% населения Земли испытывает недостаток в чистой воде. Если нынешние тенденции потребления пресной воды сохранятся, то к 2025 году в условиях дефицита воды будут проживать каждые два из трёх жителей Земли.

Основным источником обеспечения человечества пресной водой являются в целом активно возобновляемые поверхностные воды, которые составляют около 39 000 км3 в год. Ещё в 1970-е годы эти огромные ежегодно возобновляемые ресурсы пресной воды обеспечивали одного жителя земного шара в среднем в объёме около 11 тыс. м3/год, в 1980-е годы обеспеченность водными ресурсами на душу населения снизилась до 8,7 тыс. м3/год, а к концу ХХ века – до 6,5 тыс. м3/год. С учётом прогноза роста численности населения Земли к 2050 году (до 9 млрд.) обеспеченность водой упадёт до 4,3 тыс. м3/год. Вместе с тем необходимо учитывать, что приведённые средние данные носят обобщённый характер. Неравномерность распределения населения и водных ресурсов по земному шару приводит к тому, что в некоторых странах ежегодная обеспеченность населения пресной водой снижается до 2000-1000 м3/год (страны Южной Африки) или повышается до 100 тыс. м3/год (Новая Зеландия).

Подземные воды обеспечивают потребности 30% населения Земли. Особую озабоченность человечества вызывает их нерациональное использование и методы эксплуатации. Добыча подземных вод во многих регионах земного шара ведётся в таких объёмах, которые значительно превышают способность природы к их возобновлению. Это широко распространено на Аравийском полуострове, в Индии, Китае, Мексике, странах СНГ и США. Отмечается падение уровня подземных вод на 1-3 м в год.

Сложную задачу представляет охрана качества водных ресурсов. Использование воды для хозяйственных целей является одним из звеньев круговорота воды. Но антропогенное звено круговорота существенно отличается от естественного тем, что лишь часть использованной человеком воды в процессе испарения возвращается в атмосферу. Другая её часть, особенно при водоснабжении городов и промышленных предприятий, сбрасывается обратно в реки и водоёмы в виде сточных вод, загрязнённых отходами производства. Этот процесс продолжается в течение тысячелетий. С ростом городского населения, развитием промышленности, использованием в сельском хозяйстве минеральных удобрений и вредных химических веществ загрязнение поверхностных пресных вод стало приобретать глобальный масштаб. Наиболее серьёзную проблему представляет то обстоятельство, что более чем у 1 млрд. человек отсутствует доступ к безопасной питьевой воде, а половина населения земного шара не имеет доступа к надлежащим санитарно-гигиеническим услугам. Во многих развивающихся странах реки, протекающие через крупные города, представляют собой сточные канавы, и это создаёт опасность для здоровья населения.

Мировой океан – крупнейшая экологическая система планеты Земля представляет собой акватории четырёх океанов (Атлантического, Индийского, Тихого и Северного Ледовитого) со всеми взаимосвязанными прилежащими морями. Морская вода составляет 95% объёма всей гидросферы. Будучи важным звеном в круговороте воды, она обеспечивает питание ледников, рек и озёр, а тем самым – жизнь растений и животных. Морской океан играет огромную роль в создании необходимых условий жизни на планете, его фитопланктон обеспечивает 50-70% общего объёма кислорода, потребляемого живыми существами.

Радикальные перемены в использовании ресурсов Мирового океана принесла научно-техническая революция. Вместе с тем с НТР связаны и многие негативные процессы, и среди них – загрязнение вод Мирового океана. Катастрофически увеличивается загрязнение океана нефтью, химическими веществами, органическими остатками, захоронениями радиоактивных производств и др. По оценкам, Мировой океан поглощает главную часть загрязняющих веществ. Международное сообщество активно ведёт поиск путей эффективной охраны морской среды. В настоящее время существует более 100 конвенций, соглашений, договоров и других правовых актов. Международные соглашения регулируют различные аспекты, обусловливающие предотвращение загрязнения Мирового океана, среди них:
запрещение или ограничение определёнными условиями сбросов загрязняющих веществ, образующихся в процессе нормальной эксплуатации (1954 г.);
предотвращение преднамеренного загрязнения морской среды эксплуатационными отходами с судов, а также частично от стационарных и плавучих платформ (1973 г.);
запрещение или ограничение захоронения отходов и других материалов (1972 г.);
предотвращение загрязнения или уменьшение его последствий в результате аварий и катастроф (1969, 1978 гг.).

В формировании нового международно-правового режима Мирового океана ведущее место занимает Конвенция ООН по морскому праву (1982 г.), включающая комплекс проблем охраны и использования Мирового океана в современных условиях научно-технической революции. Конвенция провозгласила международный район морского дна и его ресурсы общим наследием человечества.

Экологические проблемы Амазонки

Амазонку называют величайшей рекой мира. Экологические проблемы в современное время, имеются, в той или иной степени, у всех рек. И Амазонка не исключение.

Длина этой великой реки составляет более 6 000 километров. Ни одна река не может сравниться с ней по объему воды. Истоки свои, Амазонка берет в Андах, а устье в Атлантическом океане. Из космоса хорошо видно, как вода Амазонки, пробивает путь, на сотню километров вглубь океана. Крупнейшими реками мира являются ее притоки. В дождливые сезоны, она затапливает огромные территории суши. Здесь большое разнообразие жизни, удивительное и неповторимое.


Одной из экологических проблем реки Амазонка, является сокращение или полностью исчезновение, некоторых видов животных. К примеру, судьбе гигантской доисторической рыбе Арапаиме, грозило полное исчезновение. Эту рыбу называют живым ископаемым. Ее длина 2 метра, а вес составляет около 100 килограммов. Что бы предотвратить вымирание, ее разводят на фермах и вылавливают, когда она вырастет. Арапаимы жили в Амазонке четыреста миллионов лет, но теперь, их среда обитания изменяется и сокращается.

Река Амазонка играет важную роль в жизни не только животного мира, но и людей. Выживание местных племен, полностью зависит от этой реки. После установки дамбы, рыбы стало меньше. Ее количество, сократилось катастрофически.

Амазонка – крупнейшая река в мире. У нее тысячи притоков. В ее водах обитают пираньи, которые славятся своими острыми зубами и прожорливостью. Кроме них, в Амазонке водится еще множество удивительных существ, но дикие животные могут исчезнуть по вине цивилизации. Люди «положили глаз» на богатства Амазонки. Одной из экологических проблем является золото. Люди перерыли джунгли в его поисках.

Когда в 16 веке, Запад узнал об Амазонке, белые завоеватели начали охотиться на Арапаиму, что бы похвастаться трофеями. В результате количество рыбы сократилось, и она оказалась на грани исчезновения. Это дорогая рыба, ее стоимость 10 долларов за килограмм. Взрослая особь может стоить до 700 долларов. В ресторанах, ее мясо подается, как деликатес.

Розовые дельфины обитали в океане и реках Южной Америки, 15 миллионов лет назад. Но потом, путь к океану им преградили Анды. Они рапслодились а реках и стали розового цвета. После появления поселенцев, розовые дельфины, пострадали больше всех. Их мясо использовали в качестве наживки, что бы ловить зубатку, которая стоила дорого.

Многочисленные дамбы, мешают рыбе попасть в места нереста. Искусственные сооружения, изменили течение реки и нарушили экосистему.

Город Манаус, соседствует с джунглями Амазонки. Его основали в 19 веке, что бы развивать производство каучука. Европейцы обрадовались, когда увидели, как коренные жители собирают с деревьев каучук. Он шел на изготовление покрышек для растущей автомобильной промышленности. Промышленники, которые изготавливали резину, запугали коренное население. Тех, кто отказывался на них работать, убивали. В Европу шли суда, груженные каучуком, а коренных жителей превратили в рабов. Говорят, что за каждую тысячу тонн каучука, было заплачено 10 000 жизней. Местные промышленники превратились в рабовладельцев.

В 19 веке, племя Марубу чуть не исчезло, попав в рабство к промышленникам. В результате племя утратило свои традиции. Люди перестали вместе обрабатывать землю и делиться добычей. Это серьезная экологическая проблема местного населения. Не менее серьезной проблемой считаются болезни, которые принесли чужеземцы.

Часть видового разнообразия, исчезла в результате вырубки леса. Лесные массивы превращались в пастбища и подвергали почву эрозии. Вырубка леса, в настоящее время – это одна из важнейших экологических проблем, не только бассейна Амазонки, но и всего мира.

Geographic Trends in the Accumulation of Heavy Metals in Mosses and Forest Litters in Karelia

Key words: heavy metals, accumulation, mosses, litters, Karelia, multivariate statistical analysis.

Heavy metals (HMs) are considered to be among priority technogenic pollutants. To solve ecological problems related to the environmental effects of HMs in the Russian North, it is necessary to make a detailed inventory of their contents in natural objects in different areas with regard to the diversity of climatic and soil-geochemical conditions and the degree of industrial development in these areas. It is known that mosses are informative indicators of aerotechnogenic environmen-tal pollution. Forest litters are important as the struc-tures retaining and accumulating various pollutants.

The contents of HMs in the soil depends on the distance from local pollution sources and, to a large extent, on the pattern of pollutant transfer in the upper layers of the atmosphere. An important role belongs to region-specific natural factors, i.e., local climate, relief, vege-tation, and soils. The Republic of Karelia is located on the Baltic shield, which forms the northwestern part of the Russian platform. The vast area of the republic (117300 km 2 ) extends from the north to the south for 672 km; hence, the climate, geological structure, hydrographic net-work, soils, and vegetation in different parts of the republic are heterogeneous. The climate in Karelia is relatively mild, with a long mild winter and a short cool summer; considerable cloudiness, high humidity, and changeable weather are characteristic of all seasons. The prevailing form of atmospheric circulation over the territory of Karelia is the western transfer of air masses. The formation of precipitation is also accounted for by moisture evapo-rated from the White Sea and numerous lakes and bogs, which cover one-third of the Karelian territory. Vegeta-tion has a considerable effect on the migration of sub-stances. In Karelia, coniferous forests are the dominant type of vegetation.

The spectrum of possible sources of technogenic HM pollution in Karelia is wide. There are 10284 sources of industrial emissions into the atmosphere, and most of them are concentrated in the cities of Petrozavodsk, Segezha, Kostomuksha, and Kondo-poga. The total amount of emissions from large indus-trial enterprises of these cities reaches 128600 tons per year. A complex combination of technogenic factors and natural geochemical conditions in Karelia deter-mines the pattern of HM distribution over its territory. In this work, we studied green mosses (Pleurozium schreberi, Hylocomium splendens) and forest litters. The former indicate the state of the atmosphere over a relatively short period of time (approximately three years), and the chemical composition of the latter reflects the impact of long-term industrial pollution (over more than ten years). The chemical analysis of mosses and litters can provide information about the sources, ranges, and extents of environmental pollu-tion, as well as reveal major pollutants. Our studies were performed by internationally accepted methods (Atmospheric Heavy Metal…, 1996).

Samples of green mosses and forest litters were taken from test plots of the bioindication network cov-ering the entire Karelian territory. The contents of iron, manganese, chromium, copper, nickel, zinc, cobalt, lead, and cadmium in the samples were determined by atomic absorption spectrometry.

We also estimated the effects of climatic parameters (wind rose, precipitation rate) on the distribution of aerotechnogenic pollutants containing HMs over the territory of the republic. The data on each of eight wind directions recorded by the Karelian hydrometeorologi-cal observatory (N, S, W, E, NE, NW, SE, SW) was assessed quantitatively with respect to wind stability, i.e., the frequency of its occurrence as a percentage of the total number of observations (without calm winds). Taking into account wind directions in winter and sum-mer and different weather patterns in the cold or warm periods of the year, the parameters of stability were averaged. Thus, we distinguished cold winters with lit-tle snow from warm, snowy winters and cold, rainy summers from warm, dry summers.

We developed an original approach to the analysis of HM distribution over the Karelian territory with respect to each individual element and their combinations, Geographic Trends in the Accumulation of Heavy Metals in Mosses and Forest Litters in Karelia which allowed us to assess the structure of their emis-sion from different sources. This approach involves the combined use of the methods of multivariate statistical analysis in the following sequence: stepwise regression analysis is used for selecting the most efficient climatic indices for each element; factor analysis, for assessing the structure of HM distribution with respect to combi-nations of elements; and stepwise discriminant analy-sis, for estimating the correctness of results obtained at the preceding stages. Another reason for using factor analysis is that HMs are distributed over the territory in certain combinations, rather than individually. Our results confirmed this fact (see below).

Regression analysis was used for assessing HM accumulation in mosses and forest litters with regard to the effects of most significant climatic indices on each element (Table 1). The results showed that precipitation generally has a weak effect on HM distribution; we can note only a slight influence of this parameter on the deposition of copper, nickel, and cadmium. Westerly winds bring to the Karelian territory mainly cobalt, lead, chromium, and manganese; east-erly winds, zinc and lead; northerly winds, zinc and nickel; and southerly winds, chromium and lead. The input of lead depends on winds to the greatest extent. The westerly winds are responsible for the distribution of a broader spectrum of HMs. The regression analysis of HM distribution and accumulation in green mosses and litters produced similar results. By factorizing the matrices of correlation between the values of pollutant distribution in mosses and forest litters, calculated by regression equations, we identified three factors (F1 , F2 , and F3) accounting for 80.0 and 77.1% of the total variance for mosses and litters, respectively. Each factor reflects one aspect of the inter-nal structure of HM combinations formed upon their distribution over the territory of Karelia (Table 2). Mosses.By F1 , the combination of Zn, Cr, Co, and Pb is distinguished (high positive loads). Factor F2, by high positive loads, reflects the distribution of the com-bination of copper and manganese over the territory. High negative loads may be used for tracing pollution with lead and cadmium, with the prevalence of the lat-ter. By F3, the combination of iron and nickel is distin-guished (high positive loads); a small negative load indicates the distribution of cobalt over the territory. Forest litters.By F1, the combination of manga-nese, cobalt, iron, and copper (with the prevalence of manganese) is distinguished (high positive loads). F2 indicates the distribution of iron, cadmium, zinc, and chromium, with the prevalence of iron (high positive loads). By F3, the combination of copper and cadmium (with the prevalence of copper) is distinguished (high positive loads).

According to the pattern of object distribution (the proximity of their coordinates in a three-dimensional space), five groups of administrative districts (raions) (I–V) were distinguished, which correspond to the areas where mosses and forest litters were polluted with HM combinations accounted for by each of the three factors:

(I) Loukhskii, Kaleval’skii, Kemskii, Muezerskii, Belomorskii raions and the city of Kostomuksha; pol-lutants: nickel, copper, manganese, and iron in mosses; cadmium, iron, chromium, zinc, copper, and nickel for litters.

(II) Segezhskii and Medvezh’egorskii raions; pol-lutants: copper, cobalt, chromium, lead, zinc, cadmium, and manganese in mosses; cobalt, nickel, cadmium, zinc, iron, and lead in litters.

(III) Pitkyarantskii, Sortaval’skii, Lakhdenpokhskii, and Suoyarvskii raions; pollutants: nickel, cobalt, chro-mium, lead, cadmium, zinc, and iron in mosses; cad-mium, nickel, and lead in litters.

(IV) Pryazhinskii, Kondopozhskii, Olonetskii, Pri-onezhskii, and Vepskii raions; pollutants: cobalt, lead, and cadmium in mosses; cobalt, manganese, copper,

iron, lead, and nickel in litters. (V) Pudozhskii raion; pollutants: chromium, lead, cobalt, zinc, copper, and manganese in mosses; iron, cadmium, copper, chromium, zinc, cobalt, and manga-nese in litters.

To estimate the correctness of grouping (homogene-ity within each group and heterogeneity of different groups), stepwise discriminant analysis was used. Its results confirmed that all five groups were identified correctly: they proved to be internally homogeneous and did not overlap with one another. The main dis-criminators (major pollutants) in forming regional groups with respect to the pollution of mosses are nickel, cobalt, chromium, and cadmium. According to their significance for group formation, they can be arranged in the following series: Co > Cr > Ni > Cd. In the case of forest litters, the main discriminators arranged in the same order are as follows: Fe > Mn > Pb > Zn.

The results of pairwise comparisons of the regional groups in the three-factor spaces with respect to HM contents in mosses and forest litters (Table 3) demon-strated that differences were significant only for groups I and II, especially concerning the contents of cad-mium. In the second group (Segezhskii and Med-vezh’egorskii raions), differences between HM accu-mulation in mosses and forest litters were significant for the majority of elements (especially for copper) and nonsignificant for zinc and iron.

Thus, we revealed the existence of geographic trends in the distribution of pollutants over the Karelian territory and their accumulation in mosses and forest litters.

On the Problem of Anthropogenic Influence on Mammals of the Prepolar Ural Mountains

The eastern macroslope of the Prepolar Urals is inhabited by 40 mammalian species. Unique species diversity associated with a great variety of mountain landscapes is preserved in this relatively small area because of a low degree of anthropogenic impact. This study is an attempt to estimate the consequences of considerable intensification of human activity planned in connection with the exploitation of placer deposits. Previously, such work caused slight damage to terres- trial ecosystems because it affected the area of only 0.6--1.0 km 2 in each case. Nevertheless, these examples allow one to predict, to a certain extent, the trend of subsequent development of the anthropogenous pro- cesses in natural landscapes of the region. For a number of years, I studied the state of mam- malian populations in the regions of placer deposits, other mining enterprises, and wilderness areas. Large mammals. Route censuses of animals and their tracks were taken. Among large mammals, moose and bears prevail in the region (Flerov, 1933). On aver- age, one moose track and one bear track crossing the route were registered each 1.5 and 2 km, respectively. The tracks following along the route were not found on rock dumps of gold mines but occurred in river valleys not disturbed by mining. The tracks across the route were often near ravines joining the valley. The absence of differences between the results of censuses taken on rock dumps and in undisturbed areas is explained by the fact that the home ranges of these animals are con- centrated in ravines and on the slopes of mountain spurs. Bears in summer also occur in mountain tundras; they cross river valleys during daily migrations from one slope to another. Moose prefer forested slopes; hence, their routes across river valleys were mainly in the middle reaches, i.e., in the zone where gold placers are commonly located. Consequently, further develop- ment of gold mining in this region can have serious ecological consequences. The exploitation of large river valleys and neighboring tributaries of the same river system will result in the fragmentation of animal home ranges. In the summer and winter seasons, each individual range occupies 2.5-39.0 and 0.8-7.5 km 2, respectively (Filonov, 1993). Therefore, the loss of sev- eral parts of these ranges, even as small as i km 2 in area, will result in the substantial reduction of the total area inhabited by individual animals, and, conse- quently, in the decrease of animal abundance. Further development of mining in the Prepolar Urals will interfere with seasonal migrations of moose, preserved population of wild reindeer, and a number of rare (e.g., wolverine) and valuable commercial species (sable and marten). The point is that these migrations are generally directed from the plain to the mountains and back; hence, as mining is carried out on tributaries of large rivers flowing down from the main watershed, areas with depleted deposits in river valleys cut across the migration routes. As shown in some other regions of the Urals (Bukhmenov, 1975; Filonov, 1993), the gen- eral migration flow separates in such cases into discrete streams, traditional migration routes are displaced to new, less convenient locations, and the intensity of migration decreases. As a result, some animals winter under less favorable conditions, and their mortality increases.

An important role belongs to the effects of other industrial activities and anthropogenic factors associ- ated with mining, such as road construction, land clear- ing for house building, cutover and burned-out areas appearing in the forests, uncontrolled hunting, and anx- iety. Apparently, their adverse consequences will become even more serious with the expansion of min- ing industry. The road network will create additional barriers to animal migration; tree cutting and burning in large areas will bring about significant changes in food composition and supply of both herbivorous and pred- atory mammals, which lead to a short-term increase and subsequent decrease in animal abundance (Smirnov, 1987). Anxiety among animals will have the gravest consequences, making them migrate to the areas remote from the zone of industrial development and concentrate there. This primarily concerns herbiv- orous mammals. In the Prepolar Urals, where the productivity of ecosystems is relatively low, this process will soon result in the depletion of food resources and the consequent decrease in animal population size, as it occurred with wild reindeer. To date, the local popula- tions of large mammals have not been seriously affected by uncontrolled hunting. In the Man'ya River basin, for example, the estimated size of moose popu- lation is approximately 200 animals, commercial hunt- ing is virtually absent, and only two or three geologic field crews usually work in this region; as members of each crew shoot one or two moose per year, the total annual loss is only three to six animals, i.e., 1.5-3%. However, hunting pressure on these populations can rapidly exceed the allowable limit and result in their decline.

The aforementioned consequences of industrial development are equally unfavorable for representa- tives of the family Mustelidae. Small mustelids, such as weasels and ermines, have home ranges of several doz- ens of hectares (Danilov et al., 1979) but never inhabit the areas of rock dumps; hence, the appearance of each depleted mining site reduces the populations of these species by one or several individuals. Damage from mining is virtually irreversible, as the disturbed biogeo- cenoses will apparently recover for centuries (the areas of mines abandoned half a century ago are almost in the same state). Small mustelids face the risk of losing con- siderable proportions of their existing populations. This especially concerns ermines, which prefer floodplain biotopes. As to large mustelids, their home ranges cover dozens of square kilometers, and the effects of mining on these animals will be comparable to those on bears and ungulates.

A relatively low population density of large mam- mals is characteristic of the entire Prepolar Urals (Fle- rov, 1933; Laptev, 1958; Berdyugin, 1997), and its gradual decrease under the effects of anthropogenic factors can rapidly bring many species to the point of extinction. Therefore, instead of developing the mining industry in this region, it would be expedient to orga- nize there a specially protected area (e.g., national park) providing for the conservation of the entire com- plex of natural conditions, including the species diver- sity of mammals. This measure will also prevent pollu- tion of the rivers that provide spawning grounds for valuable fish species.

Small mammals. The species of this group (rodents and shrews), owing to their great abundance and diver- sity, play an important role in the processes occurring in natural communities. Differing from each other in biological requirements, they perform different func- tions in the communities and can promote their devel- opment in one direction or another, depending on exist- ing conditions.

The material on small mammals was collected in the main types of their habitats, both natural (27 types) and anthropogenically transformed to a greater or lesser extent (11 types). The results of this investigation are shown in the table.

In the Prepolar Urals, this animal group is repre- sented by ten species, two of which occur only in their natural habitats and are absent from anthropogenically transformed biotopes. A decrease in species diversity indicates degradation of animal communities. On the other hand, water voles appeared in the same areas. The occurrence of this species in the mountains provides evidence that human activities resulted in the expansion of river segments with a slow current and loose soils on the banks. This also follows from the fact that the abun- dance and proportion of root voles--rodents character- ized by a similar mode of life increased in the com- munities of anthropogenically transformed habitats (Berdyugin, 1985). The expansion of such landscape elements in the mountains can have grave conse- quences, as strong spring and rain floods, which are common in this zone, inevitably wash the soil away and denude the banks.

In general, the structure of rodent communities in natural habitats is characterized by the following fea- tures. The total number of rodents is relatively low: this is evidence that the productivity of both rodent commu- nities and biocenoses of the Prepolar Ural Mountains as a whole is also low. The northern red-backed vole is the dominant species accounting for almost half the total number of rodents in the communities. The large- toothed red-backed vole, a specific mountain species in the Urals, is subdominant. Three species--bank, field, and Middendorff voles--are common and fairly numerous components of the communities. Other spe- cies are relatively rare. In anthropogenically trans- formed habitats, the species ratio changes substantially: the proportions of the dominant species and large- toothed red-backed voles decrease, whereas those of bank voles (more typical for the southern taiga) and Middendorff voles (inhabitants of open tundra areas) increase. Changes in the proportion of root voles in rodent communities were considered above.

All distinctive features of rodent communities in the anthropogenically transformed habitats indicate that these areas are losing the landscape pattern characteris- tic of the Prepolar Urals, i.e., coniferous forests are replaced by deciduous ones, treeless areas increase in size, and the structure of the herbaceous layer changes. In addition, the system of slowly flowing streams is formed (see above). Thus, landscape formations char- acteristic of plains and atypical for highlands appear in the mountain area. They are extremely insecure under conditions of the mountain relief and cannot provide for its stabilization. These events in their natural course can lead to a general landscape crisis (Makunina, 1974).

The survey of areas exposed to less destructive anthropogenic influences several decades ago showed that changes in plant and rodent communities are gen- erally interconnected. When the cessation of mining is followed by the development of birch, mixed conifer- ous-birch, and, at later stages, birch--coniferous herba- ceous forest communities, bank voles become domi- nant in the rodent community, and field voles increase in number. Rodents can be abundant in such forest bio- cenoses. Because of certain ecological peculiarities (primarily those of feeding), these species interfere with the reverse transformation of biocenoses into their initial state, i.e., the state of equilibrium under given environmental conditions. When anthropogenic effects result in predominant development of herbaceous asso- ciations, rodent communities are characterized by increasing proportions of field voles and, in mountain tundras, Middendorff's, bank, or gray-sided-backed voles. The ecological effect of this phenomenon is the same as in the previous case. Disturbed sites are often occupied by plant communities with a weakly devel- oped herbaceous-moss layer and low productivity (even by local criteria). They are usually inhabited by northern red-backed voles, but the density of these ani- mals is extremely low. Finally, the variant closely resembling the situation on fresh rock dumps was observed in the areas where the plant cover and soils were largely (but incompletely) destroyed in the course of mining. The recovery of the biota in this case is com- plicated and proceeds extremely slowly. For example, a site of the sedge-moss tundra exposed to such an impact more than 50 years ago is still uninhabited by rodents.

To date, the biotic complex has been completely destroyed in relatively small areas. However, further development of gold mining and the resulting expan- sion of such areas in the Prepolar Urals may have grave consequences, up to the point of ecological disaster.

On the Problem of Steppe Ecosystem Conservation in the Central Caucasus

Key words: the Caucasus, steppe ecosystems, Arik Ridge, nature reserve.

 The steppe biomes of Russia are endangered, and remaining steppe ecosystems have degraded to differ-ent extents under the impact of human activities. The main destructive factor is extensive agriculture, which cannot be profitable without expansion to new areas. The Caucasus as a whole and particularly the Northern Caucasus, one of the most densely populated regions of Russia with an economic system based primarily on agriculture, are not an exception.

Natural steppe ecosystems in the Northern Cauca-sus occupied western and central Ciscaucasia within Krasnodar and Stavropol regions, the Adygei and Kab-ardino-Balkar republics, and North Ossetia, giving way to semidesert ecosystems in plain and foothill areas lying farther east. Although the natural range of steppe cenoses in the region is limited and exposed to signifi-cant anthropogenic impact, there is not a single nature reserve established in order to conserve the steppe eco-systems of the Northern Caucasus. Piedmont forests are the main protected biomes in the Caucasian, Teberda, and North Ossetia nature reserves; subalpine and alpine meadows, in the Kabardino-Balkar High Mountain Reserve. In the Dagestan Reserve, which consists of two separate areas, attention is focused on the conser-vation of desert landscapes and coastal ecosystems of the Caspian Sea region. The necessity of establishing a forest–steppe nature reserve was substantiated by spe-cialists of Stavropol State University in 2000 (Godzevich et al., 2000).

Although the flora and fauna of the Northern Cauca-sus are unique among mountain regions of Russia, the total size of specially protected natural areas (SPNAs) in the region is the smallest, and the pattern of their dis-tribution (in clusters) does not comply with the require-ment for representativeness of the protected biota (Tishkov and Belonovskaya, 2004). Among measures to conserve steppe ecosystems in the Kabardino-Balkar Republic, of primary importance is the establishment of a nature reserve as the most effective type of SPNAs with regard to protection of ecosystems and their com-ponents. Basic criteria for identifying areas of nature-conser-vation significance are the systems of parameters char-acterizing the state of botanical and zoological objects.

In the former case, these are parameters such as rarity of plant communities, their floristic and phytosociolog-ical significance, reduction of their ranges, and the risk of their extinction (Zhuravleva, 1999). In 2006, special-ists of the Institute of the Ecology of Mountain Areas surveyed steppe ecosystems made in Maiskii, Prokhlad-nenskii, and Terskii raions of the Kabardino-Balkar Republic. The results of this survey show that relatively small areas of virgin land on the Arik Ridge fully sat-isfy the above criteria. The fact that these areas still retain their natural steppe vegetation has also been noted by other authors (Kos, 1959; Kerefov and Fiap-shev, 1977; Shkhagapsoev and Volkovich, 2002). Physiographic characteristics.The Arik Ridge, located in the northwest of the republic (43°20′–43°50′N, 44°–45°E), is actually a system of spurs of the Terek Ridge with a subdued topography and elevations of no more than 450 m a.s.l. The watershed and slopes are composed of Pliocene sand–clay conglomerate rock masses. Prevailing soils are micellar, calcareous, ordi-nary chernozems with low or medium humus contents (Kerefov and Fiapshev, 1968). According to physio-graphic zoning of the Northern Caucasus (Chupakhin, 1974), this area is in the Kabarda sloping-plain region of the Mineralnye Vody–Terek district of the Stavropol–Terek province (Central Ciscaucasia). Its climate is moderately continental, with annual average temperature and precipitation of 11.0°C and 522.6 mm (according to meteorological data from the city of Terek between 1987 and 2002) (Ashabokov et al., 2005). The bulk of precipitation falls in summer but is largely lost by evaporation and surface runoff. The area has no natural sources of water and receives it from the irrigation system that includes the Malo-Kabardinskii, Akbashskii, and Tambovskii canals.

Phytocenotic and floristic diversity.According to florogenetic zoning of the Central Caucasus (Galushko, 1976), the Arik Ridge is in the Terek–Sunzha region of the Ciscaucasian district of the Kuban–Terek piedmont steppe province. According to the results of the 2006 survey, its natural vegetation is composed mainly by herb–grass, grass–legume–herb, grass–wormwood, herb–licorice, and, to a lesser extent, beard grass, feather grass, and shrub–herb phytocenoses. Among grasses, common are steppe species such asKoeleria cristata(L.) Pers., Phleum phleoides(L.) Karst., Poa angustifoliaL., Festuca valesiacaGaudin, Helictotri-chon pubescens(Huds.) Pilg., Bromopsis riparia (Rehm.) Holub., and Bothryochloa ischaemum(L.) Keng. The last species is dominant in places, forming local beard grass communities. Feather grasses (Stipa lessingianaTrin. et Rupr. and S. pennataL.) are rare, communities with their participation are small and have limited distribution. Stipa pennataL. is included in the Red Data Books of the Russian Federation and Stavropol krai (Krasnaya kniga…, 1998, 2002). How-ever, this species is not listed in the Red Data Book of the Kabardino-Balkar Republic (Krasnaya kniga…, 2000), probably because its distribution in the republic has not been studied sufficiently. According to Kos (1959), the vegetation of the Arik Ridge in the mid-20th century included one more feather grass species, Stipa pulcherrima(included in the Red Data Books of the Russian Federation, Kabardino-Balkar Republic, and Stavropol krai), but we have not found it on the slopes surveyed.

Ephemeral grasses such as Anisantha tectorum(L.) Nevski, A. sterilis(L.) Nevski, Bromus japonicus Thunb., and Poa bulbosaL. abundantly develop in spring. In trampled areas,Hordeum leporinumLink. is dominant.

Herbage is rich in species. The dominant group includes Salvia verticillataL.,S. tesquicolaKlok. et Pobed., Filipendula vulgaris Moench, Agrimonia eupatoriaL., Galium verticillatum Danth., Centaurea dealbataWilld., and Scabiosa ochroleucaL. Some communities also contain large proportions of Polygala anatolicaBoiss. et Heldr., Fragaria viridis (Duch.) Weston, Ajuga orientalisL., and Poterium polygamum Waldst. et Kit. Areas used as grazing grounds are often overgrown with Thymus marschallianusWilld. and the legume Onobrychis bobroviiGrosshm., which is hardly eaten by livestock because of abundant pubescence. An area of natural steppe vegetation with species rarely occurring in the republic and other red-list plants was discovered on the southwestern slope of the Arik Ridge 5 km east of the village having the same name (230 m a.s.l.). The floristic diversity of two communi-ties described there in a 10 ×10-m plot on May 25, 2006, reached 35 species in the herb–grass community and 39 species in the shrub–herb community. In both cases, the herbaceous layer had 85% coverage. The group of rare species consisted ofPaeonia tenuifoliaL., Asparagus verticillatusL. (another species of the genus,A. officinalisL., is more common), Dictamnus caucasicus(Fisch. et C.A. Mey) Grossh., Clematis lathyrifoliaBess. et Reichenb., Adonis flammeaJacq., Amygdalus nanaL., and some other plants.

The fern-leaved peony P. tenuifolia(Paeoniaceae) occurs in Prokhladnenskii raion of the republic, in typ-ical steppe habitats on the slopes of Dzhenali, Terek, and Arik ridges (Kos, 1959; Shkhagapsoev and Slonov, 1987; Krasnaya kniga…, 2000; our collections of 2006 from the Arik Ridge). The species is included in the Red Data Book of North Ossetia (Krasnaya kniga…, 1981), where it occurs along the Sunzha Ridge, and in the Red Data Books of the Russian Federation and Kab-ardino-Balkar Republic (Krasnaya kniga…, 1988, 2000). On the Arik Ridge, the average population den-sity of P. tenuifoliain the communities mentioned above is 7 ind./m 2 . In the same communities, single individuals of Bieberstein’s peony P. biebersteiniana Rupr. can be found. This species visually differs from P. tenuifoliain having broader leaf segments, and the dates of blooming and fruiting in these two species are also different. According to our observations, most P. tenuifoliaplants on May 16, 2006, already entered the stage of fruiting, while P. biebersteinianaplants were still blooming. It should be noted, however, that the taxonomic status of the latter species is ambiguous, since some botanists regard it as a subspecies of P. tenuifolia. In any case, it is listed as a true species in the Red Data Book of Stavropol Krai (Krasnaya kniga…, 2002).

Shrub communities consist mainly of Amygdalus nanaL. accompanied by Frangula alnusMill. and Rhamnus pallasiiFisch. et C.A. Mey. Communities described above contain no endemic species. Similar communities probably grow also on the Terek and Sunzha ridges but are absent in other regions of the republic. On this basis, such communi-ties may be classified as rare. The fauna of the region is poorly studied, and reli-able information on its present-day species diversity is almost absent. According to available data, large mam-mals are represented by the red fox and jackal. The ornithofauna includes the steppe eagle and small birds of prey; little bustard; among gallinaceous birds, quail; among passerines, the bee-eater Merops apiaster, which nests on ravine slopes.

Thus, the Arik Ridge is exposed to considerable anthropogenic impact: the major part of land is plowed, and most of the remaining part is under uncontrolled grazing load. In addition, population decline in some plant species (e.g., P. teniofoliaand feather grasses) is also explained by their commercial harvesting for dec-orative purposes. These factors are responsible for deg-radation of primary phytocenoses, expansion of weeds. and destruction of habitats favored by different species of the local fauna.

Thus, to conserve the steppe cenoses of the Central Caucasus within the Kabardino-Balkar republic, it is necessary (1) to establish a steppe nature reserve up to 10 000 ha in area on the Arik Ridge and (2) to include vascular plant species such as Stipa pennata, S. lessin-giana, Asparagus verticillatus, and Amygdalus nanain the Red Data Book of the republic.

The establishment of such a reserve will provide a basis for measures to restore populations of the little and great bustards, unique species of typical steppe ornithofauna that had been widespread in steppe eco-systems, including those of the Northern Caucasus.

In the mid-20th century, the little bustards used to nest on the Arik Ridge (A.N. Kudaktin, personal communi-cation) and the great bustard was recorded during the periods of flight and local winter migrations in the Cen-tral Caucasus (Beme, 1958).

Carbon Concentrations and Caloric Value of Organic Matter in Northern Forest Ecosystems

Key words: north, taiga, forest ecosystems, carbon, caloric value.

The data on the carbon content in different plant organs and their caloric value are necessary for evaluat-ing the bioproduction process in phytocenoses and for studying the carbon cycle and energy and mass exchange in forest biogeocenoses. According to published data, the carbon content in individual biomass fractions amounts to 50–57% of their dry weight in conifers and to 42–48% in deciduous woody plants (Risser, 1985; Kobak, 1988; Vogt, 1991). Most of researchers estimating carbon stock in forest communities assume that it accounts for 50% of the absolutely dry weight of trunk, roots, and branches and for 45–50% of the weight of green plant parts (Makarevskii, 1991; Bidsey, 1990; Uglerod v ekosiste-makh…, 1994; Tsel’niker and Malkina, 1994; Kobak, 1989; Isaev et al., 1993, 1996). The caloric value of plant components in the ecosystems of forest zone is better studied (Ovington, 1961; Golley, 1961; Kur-batskii, 1962; Molchanov, 1971; Kononenko, 1975; Dadykin and Kononenko, 1975; Dem’yanov, 1974, 1981; Ivask, 1983, 1985; Vookova, 1985).

Utkin (1986) thoroughly analyzed the available data on the caloric values of plants and animals. He found that the heat of plant combustion as a physical parame-ter is characterized by a relatively high variability, being dependent on plant species, growing conditions, morphological structure, age, period of sampling, and other factors. However, many aspects of plant differen-tiation with respect to their caloric value remain unclear. Special studies are necessary for elucidating the relationships between the heat of plant combustion and multiple environmental factors, the intensity of physiological processes, and the biochemical composi-tion of organic matter synthesized and accumulated by plants. Moreover, publications provide virtually no data on the carbon content and caloric value of organic mat-ter in forest ecosystems of the European Northeast. The purpose of this work was to determine the car-bon content and caloric value of different phytomass fractions. The following plants were studied: trees Pinus sylvestrisL., Picea obovataLedeb., Betula pen-dulaRoth., Populus tremulaL., and Larix sibirica Ledeb., Fl. Alt.; dwarf shrubs Vaccinium vitis-idaeaL., V. myrtillusL., and V. uliginosumL.; mosses Pleuro-zium schreberi, Hylocomium splendens, Polytrichum commune, and Sphagnumsp.; mixed herbaceous sam-ples including Trientalis europeaL., Maianthemum bifoliumL., Equisetum silvaticumL., and Agrostis tenuisSibth.; and lichens Cladinasp. The main compo-nents of plant fall and litter were also analyzed. The study was carried out in pine and spruce phyto-cenoses of the middle taiga subzone in the Komi Republic (62¡N, 50¡20′E). Plant samples for analysis were collected in the end of the growing period (August to September) simultaneously with estimating the phy-tomass of the plant communities. The carbon concen-trations in phytomass fractions were determined in an ANA-1500 automatic nitrogen and carbon analyzer (Carboro Erba, Italy); the caloric value, by the combus-tion method according to Kochan (1982). Measure-ments were made in ten biological and three to eight analytical replications. The experimental data were processed statistically by conventional methods. As follows from Tables 1 and 2, the range of carbon concentrations in different phytomass fractions of trees was 44.6–50.3% dry weight; in plants of the herb– dwarf shrub layer, 41.9–53.4%; in mosses and lichens, 42.3–45.4%; in forest litter, 45.8–48.2%; and in the components of plant fall, 44.6–53.1%. The carbon con-centrations in trees varied insignificantly: the coeffi-cient of variation (CV) was 2.4% for individual species and 1.5–4.3% for phytomass components within a spe-cies. The range of carbon concentrations in plants of ground vegetation was slightly higher, but the variation of this parameter by species did not exceed 10% in these plants and 2.8% in mosses and lichens. The car-bon concentrations in individual fractions of plant fall and different types of litter differed by 5 and 8.6%, respectively.

The analysis of data on the caloric value of tree plants shows that this parameter of individual phyto-mass fractions varied from 16.81 to 21.77 kJ/g in spruce, from 16.40 to 22.91 kJ/g in pine, from 17.91 to 21.56 kJ/g in larch, and from 16.66 to 20.95 kJ/g in birch (Table 3). The coefficients of variation were 10.3, 8.8, 7.0, and 5.2%, respectively. Higher energy values were typical of trunk wood and large roots. The caloric value of plants in the lower layers of coniferous communities varied from 17.44 to 19.76 kJ/g; of forest litter, from 17.37 to 18.46 kJ/g; and of plant fall, from 16.58 to 19.89 kJ/g. The variation in this parameter both in plants of ground vegetation and in the litter was insignificant: the coefficients of variation were 3.0 and 2.4%, respectively These data can be used for making up the energy and carbon balance and for studying energy flows in forest ecosystems of the taiga zone..

Geographic Trends in the Accumulation of Heavy Metals in Mosses and Forest Litters in Karelia

Heavy metals (HMs) are considered to be among priority technogenic pollutants. To solve ecological problems related to the environmental effects of HMs in the Russian North, it is necessary to make a detailed inventory of their contents in natural objects in different areas with regard to the diversity of climatic and soil-geochemical conditions and the degree of industrial development in these areas. It is known that mosses are informative indicators of aerotechnogenic environmen-tal pollution. Forest litters are important as the struc-tures retaining and accumulating various pollutants. The contents of HMs in the soil depends on the distance from local pollution sources and, to a large extent, on the pattern of pollutant transfer in the upper layers of the atmosphere. An important role belongs to region-specific natural factors, i.e., local climate, relief, vege-tation, and soils.

The Republic of Karelia is located on the Baltic shield, which forms the northwestern part of the Russian platform. The vast area of the republic (117300 km 2 )

extends from the north to the south for 672 km; hence, the climate, geological structure, hydrographic net-work, soils, and vegetation in different parts of the republic are heterogeneous.

The climate in Karelia is relatively mild, with a long mild winter and a short cool summer; considerable cloudiness, high humidity, and changeable weather are characteristic of all seasons. The prevailing form of atmospheric circulation over the territory of Karelia is the western transfer of air masses. The formation of precipitation is also accounted for by moisture evapo-rated from the White Sea and numerous lakes and bogs, which cover one-third of the Karelian territory. Vegeta-tion has a considerable effect on the migration of sub-stances. In Karelia, coniferous forests are the dominant type of vegetation.

The spectrum of possible sources of technogenic HM pollution in Karelia is wide. There are 10284 sources of industrial emissions into the atmosphere, and most of them are concentrated in the cities of Petrozavodsk, Segezha, Kostomuksha, and Kondo-poga. The total amount of emissions from large indus-trial enterprises of these cities reaches 128600 tons per year. A complex combination of technogenic factors and natural geochemical conditions in Karelia deter-mines the pattern of HM distribution over its territory. In this work, we studied green mosses (Pleurozium schreberi, Hylocomium splendens) and forest litters. The former indicate the state of the atmosphere over a relatively short period of time (approximately three years), and the chemical composition of the latter reflects the impact of long-term industrial pollution (over more than ten years). The chemical analysis of mosses and litters can provide information about the sources, ranges, and extents of environmental pollu-tion, as well as reveal major pollutants. Our studies were performed by internationally accepted methods (Atmospheric Heavy Metal…, 1996).

Samples of green mosses and forest litters were taken from test plots of the bioindication network cov-ering the entire Karelian territory. The contents of iron, manganese, chromium, copper, nickel, zinc, cobalt, lead, and cadmium in the samples were determined by atomic absorption spectrometry.

We also estimated the effects of climatic parameters (wind rose, precipitation rate) on the distribution of aerotechnogenic pollutants containing HMs over the territory of the republic. The data on each of eight wind directions recorded by the Karelian hydrometeorologi-cal observatory (N, S, W, E, NE, NW, SE, SW) was assessed quantitatively with respect to wind stability, i.e., the frequency of its occurrence as a percentage of the total number of observations (without calm winds). Taking into account wind directions in winter and sum-mer and different weather patterns in the cold or warm periods of the year, the parameters of stability were averaged. Thus, we distinguished cold winters with lit-tle snow from warm, snowy winters and cold, rainy summers from warm, dry summers.

To estimate the correctness of grouping (homogene-ity within each group and heterogeneity of different groups), stepwise discriminant analysis was used. Its results confirmed that all five groups were identified correctly: they proved to be internally homogeneous and did not overlap with one another. The main dis-criminators (major pollutants) in forming regional groups with respect to the pollution of mosses are nickel, cobalt, chromium, and cadmium. According to their significance for group formation, they can be arranged in the following series: Co > Cr > Ni > Cd. In the case of forest litters, the main discriminators arranged in the same order are as follows: Fe > Mn > Pb > Zn.

The results of pairwise comparisons of the regional groups in the three-factor spaces with respect to HM contents in mosses and forest litters (Table 3) demon-strated that differences were significant only for groups I and II, especially concerning the contents of cad-mium. In the second group (Segezhskii and Med-vezh’egorskii raions), differences between HM accu-mulation in mosses and forest litters were significant for the majority of elements (especially for copper) and nonsignificant for zinc and iron.

Thus, we revealed the existence of geographic trends in the distribution of pollutants over the Karelian territory and their accumulation in mosses and forest litters.